Global input-to-state stability and stabilization of discrete-time piecewise affine systems

M. Lazar, W.P.M.H. Heemelsa,b

aDepartment of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
bDepartment of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

This article presents conditions for global input-to-state stability (ISS) and stabilization of discrete-time, possibly discontinuous, piecewise affine (PWA) systems. Piecewise quadratic, possibly discontinuous candidate ISS Lyapunov functions are employed for both analysis and synthesis purposes. This enables us to obtain sufficient conditions based on linear matrix inequalities, which can be solved efficiently. One of the advantages of using the ISS framework is that additive disturbance inputs are explicitly taken into account in the analysis and synthesis procedures. Furthermore, the results apply to PWA systems in their full generality, i.e. non-zero affine terms are allowed in the regions in the partition whose closure contains the origin.

Key words: Piecewise affine systems, Hybrid systems, Robust stability, Input-to-state stability.

1 Introduction

Discrete-time piecewise affine (PWA) systems form a powerful modeling class for the approximation of hybrid and nonlinear dynamics [1, 2]. They also arise from the interconnection of discrete-time linear systems and automata [3]. The modeling capability of discrete-time PWA systems has already been shown in several applications, including switched power converters [4], direct torque control of three-phase induction motors [5], applications in automotive systems [6] and systems biology [7,8]. Therefore, there is an increasing interest in developing efficient tools

\textit{Email addresses:}\ m.lazar@tue.nl, m.heemels@tue.nl (M. Lazar, W.P.M.H. Heemels).
for stability analysis and stabilizing controller synthesis for discrete-time PWA systems, as it is illustrated by several articles on this topic, see, for example, [9–12], to mention just a few. These works employ the Lyapunov stability framework and typically consider piecewise quadratic (PWQ) candidate Lyapunov functions.

Recently, in [13], the authors demonstrated that exponentially stable discrete-time PWA systems may have no robustness. More precisely, they showed that the exponential stability property cannot prevent that arbitrarily small additive disturbances keep the state trajectory far from the origin. Mathematically speaking, this means that the system is not input-to-state stable (ISS) [14] with respect to arbitrarily small disturbances. The non-robustness property is related to the absence of a continuous Lyapunov function. As asymptotically stable closed-loop systems are always affected by perturbations in practice, apparently it is crucial that disturbances are taken into account when analyzing stability of PWA systems. This strongly motivates the study of robust stability.

Only few results on robust stability are available in the literature for discrete-time hybrid systems. Robust stability in terms of l_2-gain analysis of discrete-time PWA systems was investigated in [10], based on linear matrix inequalities (LMI), while in [15], it was observed that if a robustly positively invariant set can be calculated for an asymptotically stable PWA system, then local ultimate boundedness is ensured. It is also worth mentioning that the robust stability results for discrete-time linear parameter varying systems presented in [16, 17] could be used in combination with the asymptotic stability results of [12] to derive robust stability results for discrete-time switched linear systems. For local input-to-state stabilization of constrained discrete-time PWA systems using model predictive control we refer the interested reader to [18,19]. In case the constraints are absent, the results in [18,19] can result in global ISS results. For ISS results for continuous-time switched systems and hybrid systems we refer the reader to the recent works [20–22] based on smooth Lyapunov functions and to [23, 24] based on a multiple (ISS) Lyapunov functions. However, a global robust stability analysis methodology for discrete-time PWA systems that can be used for both analysis and synthesis purposes seems to be missing from the literature.

This motivates the current paper that considers discrete-time PWA systems subject to unbounded additive disturbance inputs and uses the ISS framework [14, 25] to obtain global robust stability results. For simplicity and clarity of exposition, only PWQ candidate ISS Lyapunov functions are considered, but the results can be extended mutatis mutandis to piecewise polynomial or piecewise affine candidate functions. The paper consists of two parts: the first part deals with ISS analysis, while the second part provides techniques for the synthesis of input-to-state stabilizing controllers. In both sections the sufficient conditions for ISS are expressed in terms of LMIs, which can be solved efficiently [26].

1 For completeness, an example from [13] is presented in Section 2.
One of the advantages of using the ISS framework for studying robust stability of
discrete-time PWA systems is that additive disturbance inputs are explicitly taken
into account in the analysis and synthesis procedures. Also, the ISS framework
enables us to obtain robust stability results for PWA systems in their full generality,
I.e. non-zero affine terms are allowed in the regions in the state-space partition
whose closure contains the origin. This situation is often excluded in other works.
In this paper we develop a new LMI technique for dealing with non-zero affine
terms, which does not rely on a system transformation and the S-procedure, as,
for instance, in [10]. The technique presented here leads to LMI based sufficient
conditions for both ISS analysis and synthesis of ISS controllers.

1.1 Notation and basic definitions

Let \mathbb{R}, \mathbb{R}_+, \mathbb{Z} and \mathbb{Z}_+ denote the field of real numbers, the set of non-negative reals, the set of integers and the set of non-negative integers, respectively. We use the notation $\mathbb{Z}_{\geq c_1}$ and $\mathbb{Z}_{(c_1,c_2]}$ to denote the sets $\{k \in \mathbb{Z}_+ \mid k \geq c_1\}$ and $\{k \in \mathbb{Z}_+ \mid c_1 < k \leq c_2\}$, respectively, for some $c_1, c_2 \in \mathbb{Z}_+$. We denote by $\| \cdot \|$ the Euclidean norm. For a sequence $\{z_p\}_{p \in \mathbb{Z}_+}$ let $\|\{z_p\}_{p \in \mathbb{Z}_+}\| := \sup\{\|z_p\| \mid p \in \mathbb{Z}_+\}$. For a sequence $\{z_p\}_{p \in \mathbb{Z}_+}$ with $z_p \in \mathbb{R}^l$, $z_{[k]}$ denotes the truncation of $\{z_p\}_{p \in \mathbb{Z}_+}$ at time $k \in \mathbb{Z}_+$, i.e. $z_{[k]} = \{z_p\}_{p \in \mathbb{Z}_{[0,k]}}$.

For a matrix $Z \in \mathbb{R}^{m \times n}$ let $\|Z\| := \sup_{x \neq 0} \frac{\|Zx\|}{\|x\|}$ denote its induced Euclidean norm. For a positive definite matrix $Z \in \mathbb{R}^{n \times n}$, $\lambda_{\min}(Z)$ and $\lambda_{\max}(Z)$ denote the smallest and the largest eigenvalue of Z, respectively.

For a set $\mathcal{P} \subseteq \mathbb{R}^n$, we denote by $\partial \mathcal{P}$ the boundary, by $\text{int}(\mathcal{P})$ the interior and by $\text{cl}(\mathcal{P})$ the closure of \mathcal{P}. A polyhedron (or a polyhedral set) is a set obtained as the intersection of a finite number of open and/or closed half-spaces.

A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to class \mathcal{K} if it is continuous, strictly increasing and $\varphi(0) = 0$. A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ belongs to class \mathcal{K}_∞ if $\varphi \in \mathcal{K}$ and it is unbounded (i.e. $\varphi(s) \to \infty$ as $s \to \infty$). A function $\beta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ belongs to class \mathcal{KL} if for each fixed $k \in \mathbb{R}_+$, $\beta(\cdot, k) \in \mathcal{K}$ and for each fixed $s \in \mathbb{R}_+$, $\beta(s, \cdot)$ is non-increasing and $\lim_{k \to \infty} \beta(s,k) = 0$.

1.2 Preliminary results on input-to-state stability

Consider the discrete-time autonomous perturbed nonlinear system described by

$$x_{k+1} = G(x_k, v_k), \quad k \in \mathbb{Z}_+,$$

(1)
where \(x_k \in \mathbb{R}^n \) is the state, \(v_k \in \mathbb{R}^{d_v} \) is an unknown disturbance input and \(G : \mathbb{R}^n \times \mathbb{R}^{d_v} \to \mathbb{R}^n \) is an arbitrary nonlinear function. Next, we define the notions of input-to-state practical stability (ISpS) [27,28] and input-to-state stability [14,25] for the discrete-time perturbed nonlinear system (1).

Definition 1.1 The system (1) is said to be **globally ISpS** if there exist a \(\mathcal{K} \mathcal{L} \)-function \(\beta(\cdot, \cdot) \), a \(\mathcal{K} \)-function \(\gamma(\cdot) \) and a non-negative constant \(d \) such that, for each \(x_0 \in \mathbb{R}^n \) and all \(\{v_p\}_{p \in \mathbb{Z}_+} \) with \(v_p \in \mathbb{R}^{d_v} \) for all \(p \in \mathbb{Z}_+ \), it holds that the corresponding state trajectory satisfies

\[
\|x_k\| \leq \beta(\|x_0\|, k) + \gamma(\|v_{k-1}\|) + d, \quad \forall k \in \mathbb{Z}_{\geq 1}.
\]

If the above condition holds for \(d = 0 \), the system (1) is said to be **globally ISS**.

Notice that the global ISS property implies that the origin is an equilibrium in (1) for zero disturbance input, meaning that \(G(0,0) = 0 \).

In what follows we state a **discrete-time** version of the **continuous-time** ISpS sufficient conditions of Proposition 2.1 of [28], and a version of the discrete-time ISS result of [25]. These results will be used throughout the paper to establish ISpS and ISS for the particular case of PWA systems. A proof is provided for completeness.

Theorem 1.2 Let \(d_1, d_2 \) be non-negative constants, let \(a, b, c, \lambda \) be positive constants with \(c \leq b \) and let \(\alpha_1(s) := as^\lambda \), \(\alpha_2(s) := bs^\lambda \), \(\alpha_3(s) := cs^\lambda \) and \(\sigma \in \mathcal{K} \). Furthermore, let \(V : \mathbb{R}^n \to \mathbb{R}_+ \) be a function such that

\[
\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|) + d_1 \quad (3a)
\]

\[
V(G(x,v)) - V(x) \leq -\alpha_3(\|x\|) + \sigma(\|v\|) + d_2 \quad (3b)
\]

for all \(x \in \mathbb{R}^n \) and all \(v \in \mathbb{R}^{d_v} \). Then it holds that:

(i) The system (1) is globally ISpS. Moreover, the ISpS property (2) of Definition 1.1 holds for

\[
\beta(s,k) := \alpha_1^{-1}(3\rho^k\alpha_2(s)), \quad \gamma(s) := \alpha_1^{-1}\left(\frac{3\sigma(s)}{1-\rho}\right), \quad d := \alpha_1^{-1}(3\xi),
\]

where \(\xi := d_1 + \frac{d_2}{1-\rho} \) and \(\rho := 1 - \xi \in [0,1) \).

(ii) [25] If inequalities (3) hold for \(d_1 = d_2 = 0 \), the system (1) is globally ISS. Moreover, the ISS property (2) of Definition 1.1 (i.e. when \(d = 0 \)) holds for

\[
\beta(s,k) := \alpha_1^{-1}(2\rho^k\alpha_2(s)), \quad \gamma(s) := \alpha_1^{-1}\left(\frac{2\sigma(s)}{1-\rho}\right),
\]

where \(\rho := 1 - \frac{\xi}{2} \in [0,1) \).
PROOF. (i) From $V(x) \leq \alpha_2(|x|) + d_1$ for all $x \in \mathbb{R}^n$, we have that for any $x \in \mathbb{R}^n \setminus \{0\}$ it holds:

$$V(x) - \alpha_3(|x|) \leq V(x) - \frac{\alpha_3(|x|)}{\alpha_2(|x|)}(V(x) - d_1) = \rho V(x) + (1 - \rho)d_1,$$

where $\rho := 1 - \frac{\varepsilon}{\delta} \in [0, 1)$. In fact, the previous inequality holds for all $x \in \mathbb{R}^n$, since $V(0) - \alpha_3(0) = \rho V(0) + (1 - \rho)V(0) \leq \rho V(0) + (1 - \rho)d_1$. Then, inequality (3b) becomes

$$V(G(x,v)) \leq \rho V(x) + \sigma(||v||) + (1 - \rho)d_1 + d_2,$$

for all $x \in \mathbb{R}^n$ and all $v \in \mathbb{R}^{d_v}$. Applying inequality (6) repetitively yields:

$$V(x_{k+1}) \leq \rho^{k+1}V(x_0) + \sum_{i=0}^{k} \rho^i \left[\sigma(||v_{k-i}||) + (1 - \rho)d_1 + d_2 \right]$$

for all $x_0 \in \mathbb{R}^n$, $v_{[k]} = \{v_0, v_1, \ldots, v_k\} \in \{\mathbb{R}^{d_v}\}^{k+1}$, $k \in \mathbb{Z}_+$. Here, $v_{[k]}$ is the truncation of some corresponding disturbance sequence. Then, taking (3a) into account and using the property $\sigma(||v_i||) \leq \sigma(||v_{[k]}||)$ for all $i \leq k$ and the identity $\sum_{i=0}^{k} \rho^i = \frac{1 - \rho^{k+1}}{1 - \rho}$, the following inequalities hold:

$$V(x_{k+1}) \leq \rho^{k+1}\alpha_2(||x_0||) + \rho^{k+1}d_1 + \sum_{i=0}^{k} \rho^i \left[\sigma(||v_{k-i}||) + (1 - \rho)d_1 + d_2 \right]$$

$$\leq \rho^{k+1}\alpha_2(||x_0||) + \rho^{k+1}d_1 + \left[\sigma(||v_{[k]}||) + (1 - \rho)d_1 + d_2 \right] \sum_{i=0}^{k} \rho^i$$

$$= \rho^{k+1}\alpha_2(||x_0||) + \frac{1 - \rho^{k+1}}{1 - \rho}\sigma(||v_{[k]}||) + d_1 + \frac{1 - \rho^{k+1}}{1 - \rho}d_2$$

$$\leq \rho^{k+1}\alpha_2(||x_0||) + \frac{1}{1 - \rho}\sigma(||v_{[k]}||) + d_1 + \frac{1}{1 - \rho}d_2,$$

for all $x_0 \in \mathbb{R}^n$, $v_{[k]} \in \{\mathbb{R}^{d_v}\}^{k+1}$, $k \in \mathbb{Z}_+$. Let $\xi := d_1 + \frac{d_2}{1 - \rho}$. Taking (3a) into account and letting α_1^{-1} denote the inverse of α_1, we obtain:

$$||x_{k+1}|| \leq \alpha_1^{-1}(V(x_{k+1})) \leq \alpha_1^{-1} \left(\rho^{k+1}\alpha_2(||x_0||) + \xi + \frac{\sigma(||v_{[k]}||)}{1 - \rho} \right).$$

(7)

Applying the following inequality (notice that α_1^{-1} is a \mathcal{K}_∞ function as well),

$$\alpha_1^{-1}(z + y + s) \leq \alpha_1^{-1}(3 \max(z,y,s)) \leq \alpha_1^{-1}(3z) + \alpha_1^{-1}(3y) + \alpha_1^{-1}(3s),$$

(8)

we obtain from (7)

$$||x_{k+1}|| \leq \alpha_1^{-1}(3\rho^{k+1}\alpha_2(||x_0||)) + \alpha_1^{-1} \left(3\frac{\sigma(||v_{[k]}||)}{1 - \rho} \right) + \alpha_1^{-1}(3\xi),$$

5
for all \(x_0 \in \mathbb{R}^n, v[k] \in \{ \mathbb{R}^{d_1} \}^{k+1}, k \in \mathbb{Z}_+ \).

We distinguish between two cases: \(\rho \neq 0 \) and \(\rho = 0 \). First, suppose \(\rho \in (0, 1) \) and let \(\beta(s, k) := \alpha_i^{-1}(3\rho^k\alpha_2(s)) \). For a fixed \(k \in \mathbb{Z}_+ \), we have that \(\beta(\cdot, k) \in \mathcal{K} \) due to \(\alpha_2 \in \mathcal{K}_\infty, \alpha_i^{-1} \in \mathcal{K}_\infty \) and \(\rho \in (0, 1) \). For a fixed \(s \), it follows that \(\beta(s, \cdot) \) is non-increasing and \(\lim_{k \to \infty} \beta(s, k) = 0 \), due to \(\rho \in (0, 1) \) and \(\alpha_i^{-1} \in \mathcal{K}_\infty \). Thus, it follows that \(\beta \in \mathcal{K} \mathcal{L} \).

Now let \(\gamma(s) := \alpha_i^{-1}\left(\frac{3\sigma(s)}{1-\rho}\right) \). Since \(\frac{1}{1-\rho} > 0 \), it follows that \(\gamma \in \mathcal{K} \) due to \(\alpha_i^{-1} \in \mathcal{K}_\infty \) and \(\sigma \in \mathcal{K} \).

Finally, let \(d_i := \alpha_i^{-1}(3\xi) \). Since \(\rho \in (0, 1) \) and \(d_1, d_2 \geq 0 \), we have that \(\xi \geq 0 \) and thus, \(d \geq 0 \).

Otherwise, if \(\rho = 0 \) we have from (7) that

\[
\|x_k\| \leq \alpha_i^{-1}(3\sigma(\|v[k-1]\|)) + \alpha_i^{-1}(3\xi) \\
\leq \beta(\|x_0\|, k) + \alpha_i^{-1}(3\sigma(\|v[k-1]\|)) + \alpha_i^{-1}(3\xi)
\]

for any \(\beta \in \mathcal{K} \mathcal{L} \) and \(k \in \mathbb{Z}_{\geq 1} \).

Hence, the perturbed system (1) is globally ISpS and property (2) is satisfied with the functions given in (4).

(ii) Following the proof of statement (i), it is straightforward to observe that when the sufficient conditions (3) are satisfied for \(d_1 = d_2 = 0 \), then global ISS is achieved, since \(d = \alpha_i^{-1}(3\xi) = \alpha_i^{-1}(0) = 0 \). From (7) and (8), it can be easily shown that global ISS holds with the functions given in (5).

Definition 1.3 A function \(V(\cdot) \) that satisfies the hypothesis of Theorem 1.2 is called an ISpS (ISS) Lyapunov function. A function \(V(\cdot) \) that satisfies the hypothesis of Theorem 1.2, part (ii), only for \(v = 0 \) is called a Lyapunov function.

Remark 1.4 While ISS results commonly require continuity of the system dynamics \(G(\cdot, \cdot) \) and smoothness of the ISS Lyapunov function \(V(\cdot) \), the hypothesis of Theorem 1.2 allows for both \(G(\cdot, \cdot) \) and \(V(\cdot) \) to be discontinuous. If inequality (3a) holds for \(d_1 = 0 \), then the hypothesis of Theorem 1.2 only implies continuity at the point \(x = 0 \), and not necessarily on a neighborhood of \(x = 0 \). For the continuous-time case, results that replace smoothness of \(V(\cdot) \) by piecewise smoothness have been recently presented in [24].
2 A motivating example and problem statement

In the remainder of this article we focus on perturbed discrete-time, possibly discontinuous, PWA systems of the form

$$x_{k+1} = G(x_k, v_k) := A_j x_k + f_j + D_j v_k \quad \text{if} \quad x_k \in \Omega_j,$$

where $A_j \in \mathbb{R}^{n \times n}$, $f_j \in \mathbb{R}^n$, $D_j \in \mathbb{R}^{n \times d_v}$ for all $j \in \mathcal{I}$ and $\mathcal{I} := \{1, 2, \ldots, s\}$ is a finite set of indices. The collection $\{\Omega_j \mid j \in \mathcal{I}\}$ consists of (not necessarily closed) polyhedra that define a partition of \mathbb{R}^n, meaning that $\bigcup_{j \in \mathcal{I}} \Omega_j = \mathbb{R}^n$, $\Omega_i \cap \Omega_j = \emptyset$ for $i \neq j$ and $\text{int}(\Omega_j) \neq \emptyset$ for all $j \in \mathcal{I}$. Let $\mathcal{I}_0 := \{j \in \mathcal{I} \mid 0 \in \text{cl}(\Omega_j)\}$, $\mathcal{I}_1 := \{j \in \mathcal{I} \mid 0 \notin \text{cl}(\Omega_j)\}$ and let $\mathcal{I}_{\text{aff}} := \{j \in \mathcal{I} \mid f_j \neq 0\}$, $\mathcal{I}_{\text{lin}} := \{j \in \mathcal{I} \mid f_j = 0\}$, so that $\mathcal{I}_0 \cup \mathcal{I}_1 = \mathcal{I}$ and $\mathcal{I}_{\text{aff}} \cup \mathcal{I}_{\text{lin}} = \mathcal{I}$.

To illustrate that globally exponentially stable PWA systems can be non-robust to arbitrarily small perturbations, we briefly recall an example from [13]. Consider the perturbed PWA system given by (9) with $v_k \in B_{\mu} = \{v \in \mathbb{R} \mid |v| \leq \mu\}$ for some small positive parameter $\mu > 0$, $j \in \mathcal{I} := \{1, 2\}$, $k \in \mathbb{Z}_+$, and where $A_1 = A_2 = 0$, $f_1 = 0$, $f_2 = 1$, $D_1 = D_2 = 1$ and the partition is given by $\Omega_1 = \{x \in \mathbb{R} \mid x \leq 1\}$, $\Omega_2 = \{x \in \mathbb{R} \mid x > 1\}$.

Suppose that $v_k = 0$ for all $k \in \mathbb{Z}_+$. Then, one can easily observe that any solution x_k at time $k \in \mathbb{Z}_+$ of the unperturbed system corresponding to (9) starting from an initial condition $x_0 \in \mathbb{R}$ satisfies $|x_k| \leq |x_0|$ (even $|x_k| < |x_0|$ when $x_0 \neq 0$) and converges exponentially to the origin. Moreover, any trajectory x_k reaches the origin in 2 discrete-time steps or less. Furthermore, it can be proven that $V(x) := \sum_{i=0}^{\infty} x_i^2$ is a Lyapunov function, where x_i denotes the solution of the unperturbed system corresponding to (9) at time $i \in \mathbb{Z}_+$, obtained from an initial condition $x_0 := x \in \mathbb{R}$. For example, since $V(x) = \sum_{i=0}^{\infty} x_i^2 = x_x^2 + x_1^2$ for any $x_0 = x \in \mathbb{R}$, it holds that $V(G(x, 0)) - V(x) \leq -\alpha_3(|x|)$ for all $x \in \mathbb{R}$, where $\alpha_3(s) := s^2$. An explicit expression for $V(\cdot)$ is:

$$V(x) = \sum_{i=0}^{\infty} x_i^2 = x_x^2 + x_1^2 = \begin{cases} x^2 + 1 & \text{if } x > 1 \\ x^2 & \text{if } x \leq 1, \end{cases}$$

which shows that $V(\cdot)$ is discontinuous at $x = 1$.

Now consider the case where $v_k = \mu > 0$ for all $k \in \mathbb{Z}_+$ in (9). Then, the origin of the perturbed system (9) is not ISS, as $x_k = 1 + \mu$ is an equilibrium of (9) to which all trajectories with initial conditions $x_0 \in \mathbb{R}_{\geq 1}$ converge. Hence, no matter how small $\mu > 0$ is taken, the PWA system (9) is not ISS in \mathbb{R} for disturbances in B_μ.

The above example shows that globally exponentially PWA systems that admit a discontinuous Lyapunov function, which could be found via the tools presented in [9–12], do not necessarily have any robustness when affected by arbitrarily small
perturbations. Therefore, the aim of this paper is to derive sufficient conditions for
global ISpS and global ISS, respectively, of perturbed PWA systems of the form
(9). Although discontinuous Lyapunov functions may have the disadvantage that
they do not transfer exponential stability for the nominal system to ISS for the
perturbed system, as demonstrated by the example above (and hence, are not nec-
essarily ISS Lyapunov functions), they still can be used, if properly constructed, to
establish ISpS or ISS of perturbed PWA systems (see Remark 1.4). As discontin-
uous (ISpS or ISS) Lyapunov functions are common in hybrid systems theory via
the multiple Lyapunov approach [29] and in particular PWQ functions have com-
putational advantages as they can often be found via linear matrix inequalities, we
also adopt PWQ, possibly discontinuous, candidate ISpS (ISS) Lyapunov functions
of the form
\[V : \mathbb{R}^n \to \mathbb{R}_+, \quad V(x) = x^\top P_j x \quad \text{if} \quad x \in \Omega_j, \]
where \(P_j, j \in \mathcal{S} \), are positive definite and symmetric matrices. Observe that
\(V(\cdot) \) satisfies condition (3a) with
\[\alpha_1(\|x\|) := \min_{j \in \mathcal{S}} \lambda_{\min}(P_j) \|x\|^2, \quad \alpha_2(\|x\|) := \max_{j \in \mathcal{S}} \lambda_{\max}(P_j) \|x\|^2 \]
and \(d_1 = 0 \).

3 Input-to-state stability analysis tools for PWA systems

In this section we present LMI-based sufficient conditions for global ISpS (ISS)
of the PWA system (9). Let \(Q \) be a known positive definite and symmetric matrix
and let \(\gamma_1, \gamma_2 \) be known positive numbers with \(\gamma_1 \gamma_2 > 1 \). For any \((j, i) \in \mathcal{S} \times \mathcal{S}\)
consider now the LMI
\[\Delta_{ji} := \begin{pmatrix} \Xi_{ji} & -A_j^\top P_i & -A_j^\top P_i \\ -P_i A_j & \gamma_1 P_i & -P_i \\ -P_i A_j & -P_i & \gamma_2 P_i \end{pmatrix} > 0, \]
where
\[\Xi_{ji} := P_j - A_j^\top P_i A_j - E_j^\top U_{ji} E_j - Q - M_{ji}. \]
The matrix \(E_j, j \in \mathcal{S} \), defines the cone \(\mathcal{C}_j := \{ x \in \mathbb{R}^n | E_j x \geq 0 \} \) that is chosen such
that \(\Omega_j \subseteq \mathcal{C}_j \). The role of these matrices is to introduce an \(S \)-procedure relaxation
[30]. The unknown variables in (12) are the matrices \(P_j, j \in \mathcal{S} \), which are required
to be positive definite and symmetric, the matrices \(U_{ji}, (j, i) \in \mathcal{S} \times \mathcal{S} \), which need
to have non-negative elements, and the matrices \(M_{ji}, (j, i) \in \mathcal{S}_{\text{aff}} \times \mathcal{S} \), which are
required to be positive definite and symmetric. For all \((j, i) \in \mathcal{S}_{\text{lin}} \times \mathcal{S}\) we take
$M_{ji} = 0$. For any $(j, i) \in \mathcal{S}_{\text{aff}} \times \mathcal{S}$, define

$$
\mathcal{E}_{ji} := \{ x \in \mathbb{R}^d \mid x^TM_{ji}x < (1 + \gamma_1)f_j^TP_if_j \}.
$$

Theorem 3.1 Let system (9), the matrix $Q > 0$ and the numbers $\gamma_1, \gamma_2 > 0$ with $\gamma_1 \gamma_2 > 1$ be given. Suppose that the LMIs

$$
\Delta_{ji} > 0, \quad (j, i) \in \mathcal{S} \times \mathcal{S}
$$

are feasible. Then, it holds that:

(i) The system (9) is globally ISpS;

(ii) If $\bigcup_{i \in \mathcal{S}} \mathcal{E}_{ji} \cap \Omega_j = \emptyset$ for all $j \in \mathcal{S}_{\text{aff}}$, then system (9) is globally ISS;

(iii) If system (9) is piecewise linear (PWL), i.e. $\mathcal{S}_{\text{lin}} = \mathcal{S}$, then system (9) is globally ISS.

PROOF. The proof consists in showing that $V(\cdot)$, as defined in (10), is an ISpS (ISS) Lyapunov function.

(i) By the hypothesis $\Delta_{ji} > 0$ for all $(j, i) \in \mathcal{S} \times \mathcal{S}$ it follows that:

$$
\left(x^T f_j^T (D_jv)^T \right) \Delta_{ji} \left(\begin{array}{c} x \\ f_j \\ D_jv \end{array} \right) \geq 0, \quad \forall x \in \Omega_j, \quad \forall (j, i) \in \mathcal{S} \times \mathcal{S}, \quad \forall v \in \mathbb{R}^{d_v}.
$$

The above inequality yields for all $x \in \Omega_j$:

$$
(A_jx + f_j + D_jv)^T P_i (A_jx + f_j + D_jv) - x^T P_jx
\leq -x^T Qx + (1 + \gamma_2)(D_jv)^T P_i (D_jv) - x^T E_j^T U_j E_jx +
(1 + \gamma_1)f_j^TP_if_j - x^T M_{ji}x
\leq -\lambda_{\min}(Q)\|x\|^2 + (1 + \gamma_2)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|D_j\|^2 \|v\|^2 +
(1 + \gamma_1)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|f_j\|^2.
$$

Hence, $V(A_jx + f_j + D_jv) - V(x) \leq -\alpha_3(\|x\|) + \sigma(\|v\|) + d_2$ for all $x \in \Omega_j$, $(j, i) \in$

Note that $\bigcup_{i \in \mathcal{S}} \mathcal{E}_{ji} \cap \Omega_j = \emptyset$ for all $j \in \mathcal{S}_{\text{aff}}$ implies $S_0 \subseteq \mathcal{S}_{\text{lin}}$.

9
\(\mathcal{S} \times \mathcal{S} \) and all \(v \in \mathbb{R}^{d_1} \), where

\[
\begin{align*}
\alpha_3(\|x\|) &:= \lambda_{\min}(Q)\|x\|^2, \\
\sigma(\|v\|) &:= (1 + \gamma_2)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|D_j\|^2\|v\|^2, \\
d_2 &:= (1 + \gamma_1)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|f_j\|^2.
\end{align*}
\]

Notice that \(\Delta_{ji} > 0 \) for all \((j, i) \in \mathcal{S} \times \mathcal{S} \) also implies \(P_i > 0 \) for all \(i \in \mathcal{S} \) and thus, (11) holds.

From (12) we have that for all \((j, i) \in \mathcal{S} \times \mathcal{S} \),

\[
\Delta_{ji} > 0 \Rightarrow \Xi_{ji} > 0 \Rightarrow x^\top (P_j - Q)x \geq 0 \quad \text{for all} \quad x \in \Omega_j.
\]

Then, it follows that for all \(j \in \mathcal{S} \) and all \(x \in \Omega_j \):

\[
\lambda_{\min}(Q)\|x\|^2 \leq x^\top Qx \leq x^\top P_jx \leq \max_{j \in \mathcal{S}} \lambda_{\max}(P_j)\|x\|^2,
\]

which yields \(\lambda_{\min}(Q) := c \leq b := \max_{j \in \mathcal{S}} \lambda_{\max}(P_j) \). Hence, the function \(V(\cdot) \) defined in (10) satisfies the hypothesis of Theorem 1.2 with \(d_1 = 0 \) and \(d_2 = (1 + \gamma_1)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|f_j\|^2 \). Then, the statement follows from Theorem 1.2.

(ii) To establish global ISS, we need to prove that in the above setting, we can take \(d_2 = 0 \) under the additional hypothesis. Consider the first inequality in (14). For \(j \in \mathcal{S}_{\text{lin}} \), if \(x \in \Omega_j \) we obtain \(d_2 = 0 \) due to \(f_j = 0 \) and \(M_{ji} = 0 \). For any \(j \in \mathcal{S}_{\text{aff}} \), it holds that \(x \in \Omega_j \) implies \(x \notin \cup_{i \in \mathcal{S} \setminus \mathcal{S}_j} \). This yields for any \(j \in \mathcal{S}_{\text{aff}} \) that

\[
x \in \Omega_j \Rightarrow (1 + \gamma_1)f_j^\top P_jf_j - x^\top M_{ji}x \leq 0
\]

and thus, from the first inequality in (14) it follows that the function \(V(\cdot) \) defined in (10) satisfies the hypothesis of Theorem 1.2 for \(d_1 = d_2 = 0 \). Hence, the statement follows from Theorem 1.2.

(iii) This is a special case of part (ii).

The matrix \(Q \) gives the gain of the \(\mathcal{K} \)-function \(\alpha_3(\cdot) \) and is related to the decrease of the state norm, and hence, to the transient behavior (see the proof of Theorem 1.2 and the role of \(\rho \)). If ISpS (ISS) is the only goal, \(Q \) can be chosen less positive definite to reduce conservatism of the LMI (13). The numbers \(\gamma_1, \gamma_2 \) and the matrices \(\{P_j \mid j \in \mathcal{S}\} \) yield the constant \(d_2 = (1 + \gamma_1)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|f_j\|^2 \) and the gain of the \(\mathcal{K} \)-function \(\sigma(\|v\|) = (1 + \gamma_2)\max_{i \in \mathcal{S}} \lambda_{\max}(P_i) \max_{j \in \mathcal{S}} \|D_j\|^2\|v\|^2 \), which influence the functions \(\beta(\cdot, \cdot) \), \(\gamma(\cdot) \) and the constant \(d \) defined in (4).

Remark 3.2 A necessary condition for feasibility of the LMI (13) is \(\gamma_1 \gamma_2 > 1 \). As it would be desirable to obtain a constant \(d_2 \) and gain of the function \(\sigma(\cdot) \) as small
as possible, one has to make a trade-off in choosing γ_1 and γ_2. One could add a cost criterion to (13) and specify γ_1, γ_2 as unknown variables in the resulting optimization problem, which might solve the trade-off. However, if γ_1 and γ_2 are not fixed, (13) is a bilinear matrix inequality (i.e. due to $\gamma_1 P_i, \gamma_2 P_i$). Since the unknowns γ_1, γ_2 are scalars, this problem can still be solved efficiently via semi-definite programming solvers (software), e.g. [31], [32], by setting lower and upper bounds for γ_1, γ_2 and doing bisections.

Remark 3.3 The LMI conditions (13) are independent of the matrices D_j and f_j, $j \in \mathcal{S}$. This indicates that feasibility of the LMIs (13) implies that all systems (9) with matrices A_j, $j \in \mathcal{S}$ as used in (13) are ISpS. Only the particular value of the constant $d_2 = (1 + \gamma_1) \max_{i \in \mathcal{S}} \lambda_{\text{max}}(P_i) \max_{j \in \mathcal{S}} \|f_j\|^2$ and the gain of the \mathcal{K}-function $\sigma(\|v\|) = (1 + \gamma_2) \max_{i \in \mathcal{S}} \lambda_{\text{max}}(P_i) \max_{j \in \mathcal{S}} \|D_j\|^2 \|v\|^2$ depend on the particular values of f_j and D_j, $j \in \mathcal{S}$. If certain additional conditions are satisfied by f_j and D_j, $j \in \mathcal{S}$ as formulated in statements (ii) or (iii) of Theorem 3.1, then one even obtains ISS. Hence, in summary, the LMI conditions (13) guarantee ISpS for a whole class of perturbed PWA systems with the same system matrices A_j, $j \in \mathcal{S}$ and, when additional properties in terms of the matrices D_j or f_j, $j \in \mathcal{S}$ are fulfilled, then certain gains $\sigma(\cdot)$ or constants d_2 are obtained or even ISS can be derived.

Remark 3.4 Since we take $M_{ji} = 0$ for all $(j, i) \in \mathcal{S}_\text{lin} \times \mathcal{S}$, the LMI-based sufficient conditions for ISS (12) recover the LMI-based sufficient conditions for asymptotic stability presented in [10] (for PWL systems) in the absence of disturbances (i.e. when $v_k = 0$ for all $k \in \mathbb{Z}_+\text{).}$

Remark 3.5 If the disturbance inputs are bounded, which is a reasonable assumption in practice, ISpS implies, by definition, ultimate boundedness (see also [19]). This means that Theorem 3.1 part (i) implies ultimate boundedness, a result that was also obtained in [15] via a different route. However, the result of Theorem 3.1 part (i) applies to a more general class of PWA systems than the one considered in [15], since we allow for non-zero affine terms in regions Ω_j with $0 \in \text{cl}(\Omega_j)$.

4 Synthesis of input-to-state stabilizing controllers for PWA systems

In this section we address the problem of synthesizing input-to-state stabilizing controllers for perturbed discrete-time non-autonomous PWA systems:

$$x_{k+1} = g(x_k, u_k, v_k) := A_j x_k + B_j u_k + f_j + D_j v_k \quad \text{if} \quad x_k \in \Omega_j,$$

where $u_k \in \mathbb{R}^m$ is the input and $B_j \in \mathbb{R}^{n \times m}$ for all $j \in \mathcal{S}$. The notation in (15) is similar with the one used in Section 3 for system (9).
In this section we take the control input as a PWL state-feedback control law of the form:
\[u_k := h(x_k) := K_j x_k \text{ if } x_k \in \Omega_j, \tag{16} \]
where \(K_j \in \mathbb{R}^{m \times n} \) for all \(j \in \mathcal{S} \). The aim is to calculate the feedback gains \(\{K_j : j \in \mathcal{S}\} \) such that the PWA closed-loop system (15)-(16) is globally ISpS and ISS, respectively. For this purpose we make use again of PWQ candidate ISpS (ISS) Lyapunov functions of the form (10).

For any \((j, i) \in \mathcal{S} \times \mathcal{S}\), consider the following LMI:
\[\Delta_{ji} := \begin{pmatrix} \Delta_{ji}^{11} & \Delta_{ji}^{12} \\ \Delta_{ji}^{21} & \Delta_{ji}^{22} \end{pmatrix} > 0, \tag{17} \]
where
\[\Delta_{ji}^{11} := \begin{pmatrix} Z_j & -(A_j Z_j + B_j Y_j)^\top & -(A_j Z_j + B_j Y_j)^\top \\ -(A_j Z_j + B_j Y_j) & \gamma_1 Z_i & -Z_i \\ -(A_j Z_j + B_j Y_j) & -Z_i & \gamma_2 Z_i \end{pmatrix} \]
and, for \(j \in \mathcal{S}_{\text{aff}} \)
\[\Delta_{ji}^{22} := \text{diag} \left(\begin{pmatrix} Z_i & \gamma_1 Z_i & -Z_i \\ \gamma_2 Z_i \\ \end{pmatrix} \right) \]
\[\Delta_{ji}^{12} = \Delta_{ji}^{21} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix}, \]
while for \(j \in \mathcal{S}_{\text{lin}} \),
\[\Delta_{ji}^{22} := \text{diag} \left(\begin{pmatrix} Z_i & \gamma_1 Z_i & -Z_i \\ \gamma_2 Z_i \\ \end{pmatrix} \right) \]
\[\Delta_{ji}^{12} = \Delta_{ji}^{21} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix}. \]
In the above definitions, $\text{diag}([L_1, \ldots, L_n])$ denotes a diagonal matrix of appropriate dimensions with the matrices L_1, \ldots, L_n on the main diagonal, and 0 denotes everywhere a matrix of appropriate dimensions with all the elements zero.

The unknown variables in (17) are the matrices $Z_j \in \mathbb{R}^{n \times n}$, $j \in \mathcal{S}$, which are required to be positive definite and symmetric, the matrices $Y_j \in \mathbb{R}^{m \times n}$, $j \in \mathcal{S}$, and the matrices N_{ji}, $(j, i) \in \mathcal{S}_\text{aff} \times \mathcal{S}$, which are required to be positive definite and symmetric. The matrix Q is a known positive definite and symmetric matrix and the numbers $\gamma_1, \gamma_2 > 0$ with $\gamma_1\gamma_2 > 1$ play the same role as discussed in Section 3.

For any $(j, i) \in \mathcal{S}_\text{aff} \times \mathcal{S}$, define

$$
\mathcal{E}_{ji} := \{x \in \mathbb{R}^n \mid x^T N_{ji}^{-1} x < (1 + \gamma_i) f_j^T P_i f_j\}.
$$

Theorem 4.1 Let system (15), the matrix $Q > 0$ and the numbers $\gamma_1, \gamma_2 > 0$ with $\gamma_1\gamma_2 > 1$ be given. Suppose that the LMIs

$$
\Delta_{ji} > 0, \quad (j, i) \in \mathcal{S} \times \mathcal{S}
$$

are feasible and let $\{Z_j, Y_j \mid j \in \mathcal{S}\}$ and $\{N_{ji} \mid (j, i) \in \mathcal{S}_\text{aff} \times \mathcal{S}\}$ be a solution. For all $j \in \mathcal{S}$ let $P_j := Z_j^{-1}$ and let $K_j := Y_j Z_j^{-1}$. For all $(j, i) \in \mathcal{S}_\text{lin} \times \mathcal{S}$ take $M_{ji} = 0$. For all $(j, i) \in \mathcal{S}_\text{aff} \times \mathcal{S}$ take $M_{ji} = N_{ji}^{-1}$. Then, it holds that:

(i) The closed-loop system (15)-(16) is globally ISpS;

(ii) If $(\cup_{i \in \mathcal{S}} \mathcal{E}_{ji}) \cap \Omega_j = \emptyset$ for all $j \in \mathcal{S}_\text{aff}$, then the closed-loop system (15)-(16) is globally ISS;

(iii) If system (15) is PWL, i.e. $\mathcal{S}_\text{lin} = \mathcal{S}$, then the closed-loop system (15)-(16) is globally ISS.

PROOF. By applying the Schur complement [26] to (18), for any $(j, i) \in \mathcal{S} \times \mathcal{S}$ we obtain

$$
\Delta_{ji}^{11} - \Delta_{ji}^{21} \Delta_{ji}^{22} - \Delta_{ji}^{21} > 0,
$$

which yields the equivalent matrix inequality:

$$
\Phi_{ji} := \begin{pmatrix}
\Gamma_{ji} & -(A_j Z_j + B_j Y_j)^\top & -(A_j Z_j + B_j Y_j) \\
-(A_j Z_j + B_j Y_j) & \gamma_i Z_i & -Z_i \\
-(A_j Z_j + B_j Y_j) & -Z_i & \gamma_2 Z_i
\end{pmatrix} > 0
$$

and

$$
\Gamma_{ji} := Z_j - (A_j Z_j + B_j Y_j)^\top Z_i^{-1} (A_j Z_j + B_j Y_j) - Z_j Q Z_j - Z_j N_{ji}^{-1} Z_j.
$$
By pre- and post-multiplying (19) with \[
\begin{pmatrix}
Z^{-1}_{j} & 0 & 0 \\
0 & Z^{-1}_{i} & 0 \\
0 & 0 & Z^{-1}_{i}
\end{pmatrix}
\] and by replacing \(Z^{-1}_{j} \) by \(P_{j} \), \(Y_{j} \) by \(K_{j} \) and \(N_{ji}^{-1} \) by \(M_{ji} \) turns inequality (19) into the equivalent matrix inequality:

\[
\begin{pmatrix}
\Xi_{ji} & -(A_{j} + B_{j}K_{j})^{\top}P_{i} - (A_{j} + B_{j}K_{j})^{\top}P_{i} \\
-P_{i}(A_{j} + B_{j}K_{j}) & \gamma_{1}P_{i} & -P_{i} \\
-P_{i}(A_{j} + B_{j}K_{j}) & -P_{i} & \gamma_{2}P_{i}
\end{pmatrix} > 0,
\]

for all \((j, i) \in \mathcal{S} \times \mathcal{S}\), and

\[\Xi_{ji} := P_{j} - (A_{j} + B_{j}K_{j})^{\top}P_{i}(A_{j} + B_{j}K_{j}) - Q - M_{ji}.\]

Then, it follows that the LMI (13) is feasible for the closed-loop system (15)-(16) for all \((j, i) \in \mathcal{S} \times \mathcal{S}\). The proof now follows from Theorem 3.1.

Note that as in the case of ISS analysis, it can be proven that if the hypothesis of Theorem 4.1 part (i) is satisfied, then the closed-loop system (15)-(16) is ultimately bounded in the presence of bounded disturbances.

Remark 4.2 Instead of PWL state feedbacks in (16) we could also have used PWA state feedbacks, i.e. \(u_{k} = K_{j}x_{k} + k_{j} \) when \(x_{k} \in \Omega_{j} \). Note that this replaces the affine terms \(f_{j} \) in the closed-loop system by \(f_{j} + B_{j}k_{j} \). In view of Remark 3.3 feasibility of the LMIs (18) does not depend on \(D_{j} \) or \(f_{j} + B_{j}k_{j} \), \(j \in \mathcal{S} \). However, the affine terms \(k_{j} \) in the state feedback could be used subsequently, to minimize the constant \(d_{2} = (1 + \gamma_{1}) \max_{j \in \mathcal{S}} \lambda_{\max}(P_{i}) \max_{j \in \mathcal{S}} \|f_{j} + B_{j}k_{j}\|^{2} \) (reducing the size of the ultimate bound) or make sure that the conditions (ii) or (iii) in Theorem 4.1 are satisfied and obtain ISS (instead of ISpS).

5 Illustrative examples

In this section we illustrate the theoretical results presented in Section 3 and Section 4 by means of two examples.
5.1 Example 1

In this example we illustrate the S-procedure relaxation and the result of Theorem 3.1 part (iii). Consider the following perturbed PWL system:

\[x_{k+1} = \begin{cases}
A_1 x_k + v_k & \text{if } E_1 x_k > 0 \\
A_2 x_k + v_k & \text{if } E_2 x_k \geq 0 \\
A_3 x_k + v_k & \text{if } E_3 x_k > 0 \\
A_4 x_k + v_k & \text{if } E_4 x_k \geq 0 \& x_k \neq 0,
\end{cases} \tag{20} \]

where all inequalities hold componentwise, \(A_1 = \begin{bmatrix} 0.5 & 0.61 \\ 0.9 & 1.345 \end{bmatrix}, \ A_2 = \begin{bmatrix} -0.92 & 0.644 \\ 0.758 & -0.71 \end{bmatrix}, \ A_3 = A_1 \) and \(A_4 = A_2 \). The state-space partition of system (20) is given by the matrices \(E_1 = -E_3 = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \) and \(E_2 = -E_4 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \).

Searching for a common quadratic or a PWQ without the S-relaxation ISS Lyapunov function did not succeed for system (20). However, by solving the LMI (12) for \(Q = 10^{-4}I_2, \ \gamma_1 = 100 \) and \(\gamma_2 = 11 \) we obtained the following PWQ with an S-relaxation ISS Lyapunov function \(V(x) = x^T P_j x \) if \(x \in \Omega_j, \ j = 1, 2, 3, 4 \):

\[
P_1 = \begin{bmatrix} 0.1845 & 0.0494 \\ 0.0494 & 0.0335 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 0.0851 & -0.0110 \\ -0.0110 & 0.0336 \end{bmatrix},
\]

\[
P_3 = P_1, \quad P_4 = P_2,
\]

\[
U_{11} = \begin{bmatrix} 0.0119 & 0.0519 \\ 0.0519 & 0.0223 \end{bmatrix}, \quad U_{12} = \begin{bmatrix} 0.0120 & 0.0540 \\ 0.0540 & 0.0053 \end{bmatrix},
\]

\[
U_{21} = \begin{bmatrix} 0.0035 & 0.0048 \\ 0.0048 & 0.0041 \end{bmatrix}, \quad U_{22} = 10^{-3} \begin{bmatrix} 0.1185 & 0.2265 \\ 0.2265 & 0.3749 \end{bmatrix}.
\]

States trajectories for system (20) with initial state \(x_0 = [-10 10]^T \) are plotted in Figure 1 together with the additive disturbance inputs history. The disturbance inputs were randomly generated in the interval \([0, 1]\) until sampling time 70 and then set equal to zero. The gain of the function

\[
\sigma(||v||) = (1 + \gamma_2) \max_{j=1,2,3,4} \lambda_{\max}(P_j) ||v||^2
\]

corresponding to \(\gamma_2 = 11 \) is 2.3911. This yields an ISS gain equal to 15.4243 for system (20) via the relation \(\gamma(s) := \alpha_1^{-1} \left(\frac{2\sigma(s)}{1-s} \right) \) established in (5). As guaranteed by Theorem 3.1, system (20) is globally ISS, which ensures asymptotic stability when the disturbance inputs converge to zero, as it can be observed from the states trajectories depicted in Figure 1.
5.2 Example 2

In this example we illustrate the result of Theorem 4.1 part (ii). Let

\[
A(T_s) := \begin{pmatrix}
1 & T_s & \frac{T_s^2}{3!} & \frac{T_s^3}{5!} \\
0 & 1 & T_s & \frac{T_s^2}{3!} \\
0 & 0 & 1 & T_s \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

\[
B(T_s) := \begin{pmatrix}
\frac{T_s^4}{4!} \\
\frac{T_s^3}{3!} \\
\frac{T_s^2}{2!} \\
T_s
\end{pmatrix}
\]

denote the dynamics corresponding to a discrete-time quadruple integrator, i.e. \(x_{k+1} = A(T_s)x_k + B(T_s)u_k\), obtained from a continuous-time quadruple integrator via a sampled-and-hold device with sampling period \(T_s > 0\). Let \(x_i, i = 1, 2, 3, 4\), denote the \(i\)-th component of the state vector. Let \(\Omega_1 := \{x \in \mathbb{R}^4 \mid x_4 \geq 2\}\), \(\Omega_4 := \{x \in \mathbb{R}^4 \mid x_4 \leq -2\}\), \(\Omega_2 := \{x \in \mathbb{R}^4 \mid 2 > x_4 \geq 0\}\) and let \(\Omega_3 := \{x \in \mathbb{R}^4 \mid -2 < x_4 < 0\}\). Consider now the following perturbed PWA system:

\[
x_{k+1} = \begin{cases}
A_1x_k + B_1u_k + f_1 + D_1v_k & \text{if } x_k \in \Omega_1 \\
A_2x_k + B_2u_k + f_2 + D_2v_k & \text{if } x_k \in \Omega_2 \\
A_3x_k + B_3u_k + f_3 + D_3v_k & \text{if } x_k \in \Omega_3 \\
A_4x_k + B_4u_k + f_4 + D_4v_k & \text{if } x_k \in \Omega_4,
\end{cases}
\]

(21)
where

\[
A_1 = A_4 = A(1.2), \quad B_1 = B_4 = B(1.2), \quad A_2 = A(0.9), \quad B_2 = B(0.9), \quad A_3 = A(0.8), \quad B_3 = B(0.8),
\]

\[
f_2 = f_3 = 0, \quad f_1 = f_4 = [0.10 \ 10 \ 10.1]^T, \quad D_1 = D_2 = D_3 = D_4 = [1 \ 1 \ 1]^T.
\]

The LMIs (18) were solved for \(Q = 0.01I_4, \gamma_1 = 2 \) and \(\gamma_2 = 4 \), yielding the following weights of the PWQ ISS Lyapunov function \(V(x) = x^TP_jx \) if \(x \in \Omega_j, j = 1, 2, 3, 4 \), feedbacks \(\{K_j \mid j = 1, 2, 3, 4\} \) and matrix \(M \):

\[
P_1 = P_4 = \begin{bmatrix}
0.3866 & 0.7019 & 0.5532 & 0.1903 \\
0.7019 & 1.5632 & 1.3131 & 0.4688 \\
0.5532 & 1.3131 & 1.2555 & 0.4552 \\
0.1903 & 0.4688 & 0.4552 & 0.1955
\end{bmatrix},
\]

\[
P_2 = \begin{bmatrix}
0.3574 & 0.6052 & 0.4420 & 0.1407 \\
0.6052 & 1.2725 & 0.9894 & 0.3278 \\
0.4420 & 0.9894 & 0.8812 & 0.3046 \\
0.1407 & 0.3278 & 0.3046 & 0.1328
\end{bmatrix},
\]

\[
P_3 = \begin{bmatrix}
0.3779 & 0.6410 & 0.4597 & 0.1453 \\
0.6410 & 1.3414 & 1.0298 & 0.3390 \\
0.4597 & 1.0298 & 0.9007 & 0.3118 \\
0.1453 & 0.3390 & 0.3118 & 0.1334
\end{bmatrix},
\]

\[
K_1 = K_4 = \begin{bmatrix}
-0.3393 & -1.1789 & -1.8520 & -1.7028
\end{bmatrix},
\]

\[
K_2 = \begin{bmatrix}
-0.5584 & -1.7607 & -2.4729 & -2.0012
\end{bmatrix},
\]

\[
K_3 = \begin{bmatrix}
-0.6814 & -2.0895 & -2.8249 & -2.1705
\end{bmatrix},
\]

\[
M = \begin{bmatrix}
0.0156 & 0.0075 & 0.0023 & 0.0005 \\
0.0075 & 0.0212 & 0.0082 & 0.0016 \\
0.0023 & 0.0082 & 0.0146 & 0.0044 \\
0.0005 & 0.0016 & 0.0044 & 0.0081
\end{bmatrix}.
\]

\(^3\) For simplicity we used a common matrix \(N \) for all possible mode transitions that can occur when the state is in mode 1 (region \(\Omega_1 \)) or mode 4 (region \(\Omega_4 \)), i.e. \(N = N_{11} = N_{12} = N_{13} = N_{14} = N_{44} = N_{41} = N_{42} = N_{43} \), which yields \(M = N^{-1} \).
One can easily establish that the hypothesis of Theorem 4.1 part (ii) is satisfied, i.e. $\mathcal{E}_i \cap \Omega_1 = \emptyset$ and $\mathcal{E}_i \cap \Omega_4 = \emptyset$ for all $i = 1, 2, 3, 4$, by observing that

$$\min_{x \in \Omega_1} x^TMx = \max_{x \in \Omega_4} x^TMx = 0.4340 > 0.3221 = \max_{i=1,2,3,4} (1 + \gamma_1) f_i^TPif_i = \max_{i=1,2,3,4} (1 + \gamma_1) f_i^TPif_i.$$

Hence, system (21) in closed-loop with (16) is globally ISS. The gain of the function

$$\sigma(\|v\|) = (1 + \gamma_2) \max_{j=1,2,3,4} \lambda_{\max}(P_j) \max_{j=1,2,3,4} \|D_j\|2 \|v\|2,$$

corresponding to $\gamma_2 = 4$ is 15.8772. This yields an ISS gain equal to 42.52 for system (21)-(16) via the relation $\gamma(s) = \alpha_1^{-1} \left(\frac{2\sigma(s)}{1-\rho} \right) = 42.52s$ established in (5).

The closed-loop state trajectories obtained for initial state $x_0 = [6 6 4 4]^T$ are plotted in Figure 2 together with the additive disturbance input history. The disturbance input was randomly generated in the interval $[0, 1]$ until sampling time 60 and then set equal to zero. As guaranteed by Theorem 4.1, the closed-loop system (21)-(16) is globally ISS, which ensures asymptotic stability when the disturbance inputs converges to zero, as it can be observed in Figure 2.

6 Concluding remarks

In this paper we presented LMI based sufficient conditions for global input-to-state stability and stabilization of discrete-time perturbed, possibly discontinuous, PWA
systems. These results are important as nominally exponentially stable discrete-time PWA systems can be non-robust to arbitrarily small additive disturbances [13]. This indicates that special precautions with respect to robustness must be taken when designing stabilizing controllers for PWA systems that will be implemented in practice. The developed methodology has a wide applicability, including the class of PWA systems and any hybrid system that can be transformed into an equivalent PWA form [2], e.g. mixed logical dynamical systems or linear complementarity systems.

State and input constraints have not been considered in order to obtain global ISS results. However, the usual LMI techniques [26] for specifying state and/or input constraints can be added to the sufficient conditions presented in this paper, resulting in local ISS results for constrained PWA systems.

For simplicity and clarity of exposition we employed PWQ (with an S-procedure relaxation for analysis) candidate ISS Lyapunov functions of the form (10). However, the results can be extended to piecewise polynomial or piecewise affine candidate ISS Lyapunov functions. Future work will deal with relaxations and extensions to PWA systems affected by parametric uncertainties.

7 Acknowledgements

This research was supported by the Dutch Science Foundation (STW), Grant “Model Predictive Control for Hybrid Systems” (DMR, 5675) and the European Community through the Network of Excellence HYCON (contract FP6-IST-511368).

References

