Evolution of mushroom-type structures behind a heated cylinder

Maosheng Ren, Camilo Rindt, and Anton van Steenhoven

Laboratory for Energy Technology, Department of Mechanical Engineering,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 5 September 2006; accepted 18 April 2007; published online 27 June 2007)

The three-dimensional transition in the wake flow behind a heated cylinder occurs at a much lower Reynolds number than for the unheated case. The three-dimensional transition is initialized in the near-wake by the formation of A-shaped structures and manifests itself in the far-wake as escaping mushroom-type structures from the upper vortices. In this study, both experimental and numerical techniques are used to investigate the origin and development of these mushroom-type structures. The formation of the mushroom-type structures is associated with the occurrence of A-shaped vortices in the near-wake. Hot fluid between the legs and the head of the A-shaped structure is lifted up. This lift-up process together with the action of buoyancy pulls out hot fluid from the upper vortex cores, resulting in a mushroom-type structure, which is comprised of a so-called stem and cap. Hot fluid is continuously transported through the stem to the advancing front of the mushroom-type structure. Finally, a pinch-off phenomenon is observed of the cap, ending up as a buoyant vortex ring. An analytical model is presented for the pinch-off process. © 2007 American Institute of Physics. [DOI: 10.1063/1.2741397]

I. INTRODUCTION

The aim of the present study is to investigate both experimentally and numerically the escaping mushroom-type structures in the far-wake of a heated cylinder for a relatively low Reynolds number. The wake instability behind an unheated cylinder has been the subject of many studies over more than a century. Several decades ago there was a renewed interest in this classical problem due to the ever growing computer resources and the sophisticated experimental techniques available nowadays, which can be used in understanding the details of the transition process and the route to turbulence for wake flows.

In Williamson,1 an overview is given of the different features of the wake flow behind a cylinder for the forced convection case. For Re<50, the wake consists of two counter-rotating vortices. The length of the recirculation zone grows as the Reynolds number increases. For 50<Re<190, the wake flow is characterized by alternately shed vortices. The onset of the wake instability near Re=50 has been found to be a Hopf bifurcation (Provansal et al.2). The wake oscillations are purely periodic within this Reynolds range if parallel vortex shedding takes place. For 190<Re<250, a three-dimensional transition takes place (Williamson3). First the primary vortices deform in a wavy fashion along their length during the shedding process. This results in the local spanwise formation of vortex loops, which become stretched into streamwise vortex pairs. The spanwise length scale of these structures is typically four cylinder diameters. This is known as the mode-A of instability.

For slightly higher Reynolds numbers, a gradual transfer of energy takes place from the mode-A to a mode-B of instability, which is characterized by finer-scale streamwise vortex pairs with a spanwise length scale of typically one cylinder diameter. The process of transition is complicated by the existence of vortex dislocations (Williamson4). At these dislocations, the primary vortices seem to adhere at a steady or slowly moving point at the cylinder wall for many periods. This mode is referred to as the vortex-adhesion mode (Zhang et al.5). By placing an external interference, a thin wire, at suitable locations in the near wake, they also showed the existence of a so-called mode-C in water channel experiments and numerical calculations. The corresponding three-dimensional spanwise pattern has a wavelength of approximately 1.6 times the cylinder diameter.

Despite the fact that mixed convection around bluff bodies is of great importance for various engineering applications (electronics cooling, compact heat exchangers), wake instability for a heated cylinder has until now received very little attention compared to the forced convection case. Most previous studies were focused on the first transition from a two-dimensional steady to a two-dimensional periodic wake (or vice versa). It was observed that buoyancy tends to decrease the unsteadiness in the wake, finally leading to full suppression of the vortex street (Michaux-Leblond and Bélorgey,6 Chang and Sa7) or tends to increase the unsteadiness in the wake (Hatanaka and Kawahara8), depending on the attack angle of the main flow with respect to the gravitational force. Mi and Antonia9 studied the temperature distribution within vortices in the wake of a cylinder and concluded that this distribution is quite well approximated by the theoretical distribution for a diffusing line vortex. Ezersky and Ermoshin10 studied the instability of a solitary vortex whose core has a lower density than the surrounding fluid. It is shown that for a vortex with an increasing density from the rotation axis to the periphery, flexural oscillations may be

aPresent address: Oce-Technologies B.V. Research and Development, P.O. Box 101, St. Urbanusweg 43, 5900 MA Venlo, The Netherlands. Electronic mail: maosheng.ren@oce.com
excited. However, they did not take into account gravity effects.

The influence of heat input on the transition process toward three-dimensional coherent structures where buoyancy should be taken into account (Ri > 0.1) has not yet been investigated, until the recent studies performed in Refs. 11–17. For the forced convection case, the flow becomes three-dimensional for Reynolds numbers larger than Re = 180. However, for the mixed convection case, the three-dimensional transition occurs at much lower Reynolds numbers (down to Re = 85 for Ri = 1.0 and water as the working fluid), which is referred to as the “mode-E” transition. This three-dimensional transition is initialized in the near-wake by the formation of \(\Lambda \)-shaped structures and manifests itself in the far-wake as escaping mushroom-type structures from the upper vortices. The legs of these \(\Lambda \)-shaped vortices contain streamwise vorticity generated by baroclinic vorticity production due to the occurring spanwise temperature gradients. These temperature gradients on their turn are linked to the counter-rotating vortices at the rear end of the cylinder. This influence of these near-wake flow phenomena on the vortex shedding process is investigated in Ref. 16. It is shown that quite large differences occur between the different spanwise positions. The formation of the secondary vortical structures in the near-wake is discussed, where a cyclic process is proposed. In the present paper, the three-dimensional transition behind a heated cylinder is investigated with a focus on the development of the \(\Lambda \)-structures toward mushroom-type structures and ultimately toward buoyant vortex rings in the far-wake.

The current investigation focuses on the flow phenomena behind a heated cylinder subjected to a horizontal water flow at one Reynolds number and one Richardson number, Re = 85 and Ri = 1.0, respectively. In this study, both experimental and numerical techniques are used to investigate the origin and development of these mushroom-type structures, including an electrochemical tin-precipitation visualization method, a combined Laser Induced Fluorescence and Particle Tracking Velocimetry (LIF/PTV) method, and a three-dimensional Spectral Element Method (3D-SEM). The paper is organized as follows. First, a description of the problem definition is given, together with the experimental setup and investigation techniques. Then, the formation and growth process of the mushroom-type structure is investigated and the pinch-off phenomenon is described, separating the stem from the cap. Finally, an analytical model is presented for the pinch-off process.

II. PROBLEM DEFINITION AND SOLUTION METHODS

A. Problem definition

In the current investigation, the cylinder is exposed to a horizontal uniform cross-flow, Fig. 1, where the \(z \) axis is in the spanwise direction, the \(x \) axis is in the streamwise direction, and the \(y \) axis is in the negative gravity direction. The cylinder is positioned at \(x = 0 \) and \(y = 0 \). This paper focuses on the case Re = 85, Ri = 1.0, and Pr = 7, with Reynolds, Richardson, and Prandtl defined as, respectively,

\[
\text{Re} = \frac{U_x d}{v}, \quad \text{Ri} = \frac{Gr}{Re^2} = \frac{g(T_w - T_x)d}{U_x^2}, \quad \text{Pr} = \frac{\nu}{\kappa}.
\]

Here, \(U_x \) is the main stream velocity, \(d \) is the cylinder diameter, \(\nu \) is the kinematic viscosity, \(g \) is the gravity acceleration, \(\beta \) is the thermal expansion coefficient, \(\kappa \) is the thermal diffusivity, and \((T_w - T_x) \) is the temperature difference between the cylinder wall and the main stream. In the current investigation, Ri is equal to 1.0 and Re is set to 85, and the corresponding temperature difference is then \((T_w - T_x) = 5.7 \, ^\circ C \), using water as the working fluid.

B. Experimental setup

The apparatus used in the experiment consists of three parts: the water tank, the light source with an illumination system, and the image recording with a post-processing system.

The flow is investigated in a so-called towing tank configuration, as shown in Fig. 2, with dimensions length...
× width × height = 500 × 50 × 75 cm³. In this configuration, the cylinder is towed through the water with a constant velocity \(U_c \). The cylinder has length \(L = 495 \) mm and diameter \(d = 8.5 \) mm (aspect ratio \(L/d = 58 \)). The test section consists of 15 mm thickness glass windows, held together by a steel frame, so the towing tank is optically accessible from all directions. The cylinder is positioned between two perspex plates, which are connected to a stiff structure, which also carries measurement equipment such as cameras and light sources. The stiff construction can be translated along two rails that are mounted on top of the water tank. The perspex plates are constructed in such a way that minimum disturbances are created and oblique vortex shedding is suppressed. Parallel shedding is promoted by angling the end plates until the resulting shedding frequency matches the value over the rest of the span of the cylinder.⁴

A cylindrical heating element with diameter 6.35 mm is used to obtain the desired cylinder wall temperature. The whole of the tank is supported by a sturdy steel framework and is situated in a temperature-controlled laboratory. Special care is taken to minimize thermally induced background flows, so most of the experiments show parallel vortex shedding. A detailed description of the towing tank is given in Refs. 18 and 19.

For the light source, a pulsed neodymium:yttrium-aluminum-garnet (Nd:YAG) laser is used. The laser emits light with a wavelength of 532 nm. One laser pulse has a duration of 6 ns and a maximum energy of 200 mJ. The laser beam is directed parallel to the bottom of the water tank, as shown in Fig. 2. The beam passes a negative lens to form a thin laser sheet. The laser is triggered by a camera and operates at 29 Hz. The recording is performed by a CCD camera (Kodak Megaplus, 10-bit ES 1.0, 1008 × 1019 pixels²). A Nikon lens with a focal distance of 50 cm is used in front of the CCD camera. A detailed description of the image recording and postprocessing system is given in Refs. 18 and 19.

C. Investigation methods

1. Visualization method

Flow visualizations are carried out using an electrochemical tin-precipitation method (Honji et al. ²⁰). In this method, tin ions are separated from an anode by applying a voltage difference. A thin tin wire, which is used as an anode in the current setup, is positioned upstream of the cylinder. Because the tin ions do not dissolve in pH-neutral water, the small tin-hydroxide particles of \(O(1 \mu m) \) form a homogeneous sheet that moves toward the cylinder. With this sheet, the wake behind the cylinder is visualized. A detailed description of the visualization method is presented in Ref. 21.

2. Combined LIF/PTV

A reconstruction of the velocity and temperature fields in a 2D plane is performed using a combined Laser Induced Fluorescence (LIF) and Particle Tracking Velocimetry (PTV) method. In order to measure the velocity and temperature fields simultaneously, the tank is seeded with 20 μm hollow spherical particles and fluorescent dye (Rhodamine B with concentration \(C_0 = 1.0 \times 10^{-5} \text{mol/m}^3 \)).

For the light source, a pulsed Nd:YAG laser is used. The laser emits light with a wavelength of 532 nm. One laser pulse has a duration of 6 ns and a maximum energy of 200 mJ. The laser beam is directed parallel to the cylinder. The beam passes a negative lens and a rectangular diaphragm to form a thin laser sheet.

The light intensity of the laser sheet is recorded with two CCD cameras (Kodak Megaplus, 10-bit ES 1.0, 1008 × 1019 pixels²). One camera records the light scattered by the particles filtered with a narrowband pass filter (notch filter with around 10 nm bandwidth) and another one records the fluorescent light remitted by the Rhodamine B, filtered with a high-pass filter (holographic notch filter: 0% transmission for \(\lambda = 532 \) nm and 80% transmission for \(\lambda = 575 \) nm). Two Nikon lenses with a focal distance of 55 cm are used in front of the CCD cameras. A detailed description of the image recording and postprocessing system is given in Ref. 14. The images are directly stored on two computers using the acquisition software VideoSavant. The laser triggers the cameras in order to synchronize the two cameras and the laser and operates at 30 Hz. More information about this combined measurement technique can be found in Ref. 19.

3. 3D spectral element method

Because of the small temperature differences in the experiment, in the calculations the flow is assumed to obey the Boussinesq approximation. For an efficient temporal discretization of the conservation equations, a splitting operation on the convection-diffusion equations is applied. For the momentum equation, in combination with the continuity equation, a pressure correction method is applied. This results in three steps, which account for the convection, diffusion, and pressure terms, respectively. The convection equation is integrated forward in time by an explicit third-order Taylor-Galerkin scheme, which is comprised of three explicit time steps within one implicit time step. The diffusion equation is discretized by an implicit second-order backwards difference scheme. The pressure term is treated by a projection method. Due to the limitation of memory storage, an iterative technique is used and the linear system is solved based on a preconditioning conjugate gradient method. The energy equation is solved in a similar way.

For the spatial discretization, a high-order Spectral Element Method (SEM) is used (Karniadakis and Triantafyllou, Dauchy et al.). Within an element, the equations are discretized using high-order approximation functions. In this way, a spectral convergence rate and small numerical errors, such as numerical dispersion and diffusion, can be achieved. More information on the validation of the numerical scheme can be found in Ref. 23.

The boundary conditions are prescribed as follows. At the inlet and cylinder wall, Dirichlet boundary conditions are applied for all velocity components and the temperature. The normal velocity and the tangential stresses at the side, top, and bottom walls are set to zero. Also the temperature is set to zero here. At the domain outlet, homogeneous Neumann conditions are prescribed for the normal and tangential velocity components as well as for the temperature.
ary conditions for the pressure correction follow immediately from the global mass conservation. This implicitly states that the pressure is near zero at the outflow boundary.23 It should be noticed that the vortices leaving the computational domain will be influenced by the applied boundary condition at the outflow boundary. However, van de Vosse et al.26 showed that this influence is hardly noticeable.

The element distribution used in the calculation is shown in Fig. 3. The calculation dimensions are chosen such that the three-dimensional transition can occur similar to the one found in the experiments, that the blockage effect is minimal, and that the outflow boundary conditions do not implicitly state the near-wake and far-wake behavior \((W=4d, H=18d, L_1=8d,\) and \(L_2=25d)\). Details about the validation can be found in Ref. 19. Moreover, the experiments and calculations have been quantitatively compared in Ref. 16. There, a good agreement has been achieved between the experimentally measured and numerically calculated velocity fields in the \((X-Y)\) plane at “in-plume” (spanwise position where the plume escapes downstream) and “out-of-plume” (spanwise position where no plume escapes downstream) positions, validating the numerical approach. More detailed information about the numerical method used and validation of the numerical code can be found in Ref. 19.

Proper identification and extraction of vortical structures are important in understanding their origin and dynamics. Here a \(\lambda_2\) definition is used to represent the topology and geometry of vortex cores. A detailed description of the \(\lambda_2\) definition can be found in Ref. 27.

III. THE INITIATION PROCESS OF THE MUSHROOM-TYPE STRUCTURES

For \(Ri=0\), the wake flow manifests itself as the von Kármán vortex street, as shown in Fig. 4(a). The tinned anode plate was positioned in such a way that the visualization sheet moved through the upper boundary layer of the cylinder.21 If one increases the heat input, for \(Ri=1.0\), a three-dimensional transition occurs, which manifests itself in the form of “mushroom-type” structures, as shown in Fig. 4(b). It is observed that these mushroom-type structures escape from the upper vortex and stretches in the negative gravity direction.

To get a first impression of the occurring structures, the whole volume behind the heated cylinder was illuminated. The camera was positioned above the cylinder (with some angle with respect to the gravity vector), and the top view of the wake pattern is shown in Fig. 5. For \(Ri=0\), the vortex shedding is two-dimensional. The primary cores of the shed vortices are parallel to the cylinder, as shown in Fig. 5(a). For \(Ri=1.0\), the mushroom-type structures escape from the upper vortices. The spanwise distance between the mushroom-type structures, observed by a top-view visualization, is found to be around twice the cylinder diameter; see Fig. 5(b).

From the visualizations, it appears that the flow becomes three-dimensional far before the mushroom-type structures escape from the vortices. The three-dimensionality even seems to trace back to the cylinder, which can be seen in Fig. 5.
From this figure it can be concluded that the spanwise positions, at which further downstream the mushroom-type structures are formed, are already determined at the rear end of the cylinder.

Figure 6(a) is a zoom-in picture of a \(\Lambda \)-shaped structure at the rear end of the cylinder obtained by visualization. Figure 6(b) shows the same structure by using the numerically calculated iso-\(\lambda_2 \) surface \(\lambda_2 = -0.05 \). In the near-wake, \(\Lambda \)-shaped structures are observed at \(x=5.5 \) and the \(\Lambda \)-shaped structures consist of two legs and a head, which is similar to the “hairpin” or “horseshoe” structures observed in boundary layer transition. A schematic of the \(\Lambda \)-shaped structure is presented in Fig. 7. It is known that the \(\Lambda \)-shaped structure is accompanied with the occurrence of low-speed streaks. Low-momentum fluid is accumulated between the two legs, which contain streamwise vorticity generated by baroclinic vorticity production due to the occurring spanwise temperature gradients. These temperature gradients on their turn are linked to the counter-rotating vortices at the rear end of the cylinder. The formation of the secondary vortical structures in the near-wake is discussed, where a cyclic process is proposed. The present paper focuses on the development of the \(\Lambda \)-shaped vortices toward the escaping mushroom-type structures.

The lift-up process between the streamwise legs is essential in the initiation process of the mushroom-type structures, as sketched in Fig. 7. More quantitative experimental evidence of the lift-up process is shown in Fig. 8, where the results are presented of combined temperature and velocity measurements in a vertical plane parallel to the cylinder at position \(x=5.0 \) for \(Re=85 \) and \(Ri=2.5 \). From the temperature measurement, a thin “stem” is observed, as indicated in Fig. 8(a). A “cap” shape region is connected with the upper vortex core through this stem. Similar flow structures have been found in numerically calculated results. Counter-rotating vortices (indicated as CRV\(^x\)) are observed in the velocity field located around the stem, Fig. 8(b). These CRV\(^x\)s are the cross-sectional view of the legs of the \(\Lambda \)-shaped structure. The stem region coincides with the upward motion in the velocity field. It is believed that the appearance of a cap shape indicates the birth of a mushroom-type structure.

IV. THE GROWTH PROCESS OF THE MUSHROOM-TYPE STRUCTURES

A. Buoyant plume

In general, it is known that a vortex ring can be produced by releasing a lighter fluid into a heavier ambient fluid (Turner\(^28\)). The energy is provided by the action of the buoyancy force. Such a ring is, therefore, called a buoyant vortex ring. Turner\(^28\) distinguished two physical situations. The vor-
A ring can be categorized as a starting buoyant plume or a buoyant thermal. The buoyancy supplied steadily from a maintained source generates a starting buoyant plume, while a buoyant thermal is referring to the generation of a ring by a limited volume of hot fluid.

1. Visualization

In Fig. 9, a far wake \((10 < x/D < 25)\) visualization is shown of the flow at \(Re=117\) and \(Ri=1.0\). The following observations can be made.

First, besides a “cap” at the advancing front, the mushroom-type structure also consists of a “stem” and a “root,” as indicated in Fig. 10(b). By definition, the root is located at the vortex core, where the cap originates. The stem is the connection filament between the cap and the root. Such a thin connection was also observed in the temperature measurement; see Fig. 8(a). Through the stem, hot fluid is continuously transported from the vortex core to the cap. Therefore, the current mushroom-type structure is manifested as a starting buoyant plume.
Secondly, the cap with a radius R_c gradually increases in size as a function of time. Initially, as shown in Fig. 9(a), the cap of the mushroom-type structure is still not visible yet. Gradually, it shows a mushroom shape (M), and in the end it shows a perfect ring shape in the far-wake.

Thirdly, the stem is stretched upwards with time, and this is possibly caused by the continuous addition of buoyancy flux from the vortex core. The stretching of the stem takes place under an inclination angle α, as indicated in Fig. 9(e). This inclination angle varies more or less from $\alpha \approx 45^\circ$ to $\alpha \approx 85^\circ$, with an averaged value of $\alpha \approx 65^\circ$.

This angle of inclination can be compared with experimental observations in boundary-layer studies. Zhou et al.29 found that the tilt angle varies from about 8° in the quasistreamwise legs to about 75° in the downstream end of the hairpin head. A different study by Haidari and Smith30 re-

FIG. 10. (Color online) Side view of the numerically calculated flow field $\lambda_2=−0.05$ for $Ri=1.0$ and $Re=85$. The flow is from left to right and gravity direction is in the negative y direction.
ported the angle to vary from about 6° at the upstream portion of the legs to about 67° near the head. But, in general, the average tilt angle is 45° (Head and Bandyopadhyay), which is often quoted in the literature.

It seems that the inclination angle in the current study has the same tendency as the one for a hairpin. However, it is difficult to make such a comparison, because here the buoyancy force plays an important role.

2. Numerical simulation

A numerical simulation is performed to study the evolution of the mushroom-type structure and to compare to the visualization results. Although the types of visualization differ quite a lot (streakline versus λ_2 criterion), the measured and calculated coherent structures reveal some similar patterns, which are quite illustrative. Figure 10 shows the calculated coherent structures by use of iso-λ_2, which is often quoted in the literature.

FIG. 11. (Color online) Calculated spanwise vorticity $\omega_z(x, y)$ for Re=85 and Ri=1.0 at the “in-plume” position. The numbers indicate the local maximum values, ω^+ and $\omega^−$, are regions with positive and negative spanwise vorticities, respectively. The flow is from left to right and gravity direction is in the negative y direction.

equal strength, $\omega_z^+ = |\omega_z^-| = 0.9$, and it looks like a “dipole-type” structure. A similar “dipole” structure is also observed from the measured velocity field.

With time, the region of the “dipole-type” structure is stretched upwards. The trajectory of the cap/ring is obtained by recording the position of the center of this “dipole-type” structure. Figure 12(b) shows the ring velocity \mathbf{U}_r, which steadily increases. Initially, the cap moves slowly upwards, while it accelerates at $t=3.5T$. The acceleration occurs when the strength of positive and negative vorticity reaches more or less the same level; see Fig. 12(a). The reason for this acceleration might be associated with a pinch-off phenomenon, which will be discussed later in this paper.

It is obvious to relate the dipole-like structure to the vorticity generated by baroclinic vorticity production. The presence of the temperature gradients in the x direction gives rise to vorticity production in the z direction, $\Gamma_z = g \text{Ri} \cdot \partial \Theta / \partial x$; see Fig. 13. Inside an upper vortex structure, a considerable area of positive ($+$) and negative ($-$) vortic-
ity production can be found. A closer analysis reveals that the area of positive vorticity production coincides with the developing ω_+^*. This allows us to conclude that the temperature gradients in the x direction are responsible for the growth of positive vorticity, which is located around the cap and the stem.

In general, the area of negative production ($-$) is found inside the upper vortex and stretched front-strand, as shown in Fig. 13(e). Initially, the production contributes to the growth of ω_-^* and helps vorticity being pulled out of the vortex core. Gradually, the dominance of negative production becomes less because the region experiences a stretching by the buoyancy force.

C. Pinch-off of the vortex ring

It has been shown in Fig. 10(e) that the cap and the vortex core are separated in the end-life stage of the mushroom-type structure. This phenomenon is often quoted as a pinch-off of a vortex ring. Shusser and Gharib shown that when the propagation velocity of the ring becomes equal to or larger than the flow velocity inside the stem, the cap region will be separated from the stem. After the cap separates from the stem, mass flux and energy supply from the stem to the cap is no longer possible. An acceleration of the ring is observed, as shown in Fig. 12(b), soon after the pinch-off. The acceleration can be seen by the change of the slope of the cap velocity U_c. When the stem is separated from the cap, it starts to shrink; see Fig. 10(h). The temperature diffusion very quickly after the pinch-off.

A theoretical model is proposed to associate the acceleration of the cap with the pinch-off phenomenon. Here, the plume is divided into two parts: a stem and a cap. Figure 14 shows the cap located above the stem. Let ρ be the fluid density inside the plume and ρ_A the fluid density outside the plume. The cap velocity U_c is defined at the center of the cap. Here we assume that the added mass effect, caused by the velocity difference between the cap and the surrounding fluid, is negligible. The impulse I is proportional to the fluid mass M within the cap and the cap velocity U_c.

$$I = MU_c.$$ \hspace{1cm} (2)

The buoyancy force, which causes the cap to rise, can be formulated as

$$\mathcal{F}_B = (\rho_A - \rho)g \mathcal{V}$$ \hspace{1cm} (3)

with \mathcal{V} the volume of the cap. Then, the equation for the cap motion can be written as

$$\frac{d\mathcal{V}}{dt} = \frac{d(\rho \mathcal{V} U_c)}{dt} = \mathcal{F}_B.$$ \hspace{1cm} (4)

The volume of the cap might change by a velocity difference (net mass flux) between the cap and the stem. If the density ρ is taken as constant, Eq. (4) can be rewritten as

$$\rho \frac{d\mathcal{V}}{dt} + \rho(U_c \frac{d\mathcal{V}}{dt}) = (\rho_A - \rho)g \mathcal{V}.$$ \hspace{1cm} (5)

Then, an equation for the cap acceleration is derived and reads

$$\frac{dU_c}{dt} = -\frac{U_c \frac{d\mathcal{V}}{dt}}{\mathcal{V}} + \left(\frac{\rho_A - \rho}{\rho}\right)g = \mathcal{H}(t) + (\mu - 1)g$$ \hspace{1cm} (6)

with \mathcal{V} the volume of the cap and $\mu = \rho_A/\rho$. The second term on the right-hand side,

$$(\mu - 1)g > 0 \quad \text{since} \quad \rho_A > \rho.$$ \hspace{1cm} (7)

It is obvious that the motion of the cap depends on the property of the first term $\mathcal{H}(t)$ on the right-hand side of Eq. (6). For a growing plume, due to the continuous addition of mass through the stem to the cap, the volume of the cap increases with time, resulting in

$$\mathcal{H}(t) = -\frac{U_c \frac{d\mathcal{V}}{dt}}{\mathcal{V}} < 0 \quad \text{since} \quad \frac{d\mathcal{V}}{dt} > 0.$$ \hspace{1cm} (8)

However, after pinch-off of the vortex ring, the volume of the cap remains constant, leading to

$$\mathcal{H}(t) = -\frac{U_c \frac{d\mathcal{V}}{dt}}{\mathcal{V}} = 0 \quad \text{since} \quad \frac{d\mathcal{V}}{dt} = 0.$$ \hspace{1cm} (9)

It is clear that the value of $\mathcal{H}(t)$ changes from negative to zero within a short time. This suggests that the change of volume of the cap leads to an acceleration after pinch-off. Therefore, the cap velocity increases after pinch-off, visualized as a difference slope in Fig. 12(b). However, how the volume of the cap and the associated value of $\mathcal{H}(t)$ exactly changes is still not yet clear. It is possible that other effects
also contribute to the changes in the rising velocity. For example, the relative motion between the cap and displaced ambient fluid might lead to an acceleration of the cap, which is associated with the added mass effect (Landau and Lifshitz). Furthermore, it is also possible that the baroclinic vorticity production induced by density gradients will change the vorticity field surrounding the cap, which in turn influences the cap velocity.

In summary the life of the mushroom-type structure can be described as follows, see Fig. 14. First, hot fluid is lifted up from the vortex core by the action of a \(\Lambda\)-shaped structure. Driven by buoyancy, the \(\Lambda\)-shaped structure is stretched upwards. Secondly, a transition occurs form the \(\Lambda\)-shaped toward mushroom-shape. Hot fluid is transported through the stem to the cap. The mushroom-type structure is characterized by the generation of a vortex ring at the advancing front. Finally, a pinch-off phenomenon takes place between the cap and the stem. The cap is separated from the stem and the cap accelerates suddenly, as sketched in Fig. 14(c).

V. SUMMARY AND CONCLUSIONS

It has been shown that the far-wake flow pattern is linked to the coherent structures upstream. Both visualizations and numerical simulations show coherent structures in the near-wake in the form of \(\Lambda\)-shaped structures. The spanwise distance between the \(\Lambda\)-shaped structures is about two cylinder diameters.

Furthermore, escaping mushroom-type structures from the upper vortex cores are observed in the far-wake. The spanwise position of the mushroom-type structures is the same as the one of the \(\Lambda\)-shaped structures. From both experimental and numerical results, the \(\Lambda\)-shaped structures lead to the formation of mushroom-type structures. The route-map for the formation, growth, and pinch-off can be characterized and divided into three phases.

I: The \(\Lambda\)-shaped structure. In this stage, the \(\Lambda\)-shaped structure has been found and consists of two legs and a head. It is observed that the legs coincide with regions of streamwise vorticity. The calculation suggests that the head of the \(\Lambda\)-shaped structure is formed between the legs, due to the fact that part of the vorticity is being pulled out of the primary vortex cores.

II: The lift-up phenomenon. The lift-up process, as sketched in Fig. 7, takes place between the legs and head of the \(\Lambda\)-shaped structure. As a result, hot fluid from the vortex core is transported upwards. Due to buoyancy, which becomes more and more important after the lift-up process, the \(\Lambda\)-shaped structure is transformed into the mushroom-type structure.

III: The mushroom-type structure. The symbolic beginning of the mushroom-type structure is the appearance of a cap, which is a vortex ring forming at the advancing front. The formation of the vortex ring is characterized by the appearance of a region of positive vorticity at the cap region. Additionally, the strength of the positive vorticity increases with time due to baroclinic vorticity production. A pinch-off of the vortex ring is observed when the cap is separated from the stem. The vortex ring accelerates quickly after the pinch-off.
ACKNOWLEDGMENTS

This work is part of the research programs of the Netherlands Foundation for Fundamental Research on Matters (FOM), which is financially supported by the Netherlands Organization for Scientific Research (NWO). The authors appreciate the constructive discussion with Prof. Dr. Gertjan van Heijst and technical support from the Laboratory for Energy Technology of the Department of Mechanical Engineering at Eindhoven University of Technology.