Indirect determination of trabecular bone effective tissue properties using micro-finite element simulations

E. Verhulp¹, B. van Rietbergen¹, R. Müller² and R. Huiskes¹
¹Eindhoven University of Technology, Department of Biomedical Engineering
²Swiss Federal Institute of Technology (ETH) and University of Zurich, Institute for Biomedical Engineering

Introduction
Osteoporotic fractures mainly occur at sites with relatively large amounts of trabecular bone. The devastating effects of such fractures can be prevented with accurate predictions of trabecular bone strength. Micro-finite element (µFE) models have been successfully used to study and predict trabecular bone elastic and yield properties. Strength predictions, on the other hand, require the post-yield behavior of trabecular bone tissue. Due to experimental difficulties this data is not available. The purposes of this study were to (1) indirectly determine the tissue properties using µFE models by iteratively fitting of simulation to experimental results for a trabecular bone specimen and (2) test to what extent the post-yield behavior of other similar specimens can be predicted when using these parameters in µFE analyses.

Materials and methods
Seven cylindrical trabecular bone specimens were obtained from bovine tibiae. The samples were compressed in a micro-compression device [1] to create high-resolution CT scans of their original and deformed state. At the same time, the load-displacement curve was measured. The scans of the original structures were converted to µFE models. Following Cezayirlioglu [2], the element were divided into two groups depending on their loading mode (tension or compression) as a result of a linear analysis.

A single specimen with median volume fraction (sample 0) was chosen for the fit procedure. First, the properties of the trabecular tissue were based on cortical bone. The yield and post-yield properties were subsequently adjusted in order to get the same apparent load-displacement curve. The resulting properties were used to simulate the compression of the remaining bone samples. The load-displacement curves and local deformations in the scans were used to validate the µFE analyses.

Results
The results showed that the apparent behavior of the selected trabecular bone specimen could be accurately simulated with the µFE model when the tissue properties were adjusted (Fig. 1). The resulting properties were similar to those of cortical bone, but ‘compression softening’ had to be introduced to obtain the typical descent in the load-displacement curve seen during compression tests. The fitted tissue behavior for sample 0 was used to simulate the compression experiments of the remain six samples. The results are shown in Fig. 2.

Validation on a local level revealed extreme deformations and localized high strains in the µFE meshes (Fig. 3). Cracks were also observed at those locations.

Conclusions
The fit procedure resulted in an accurate reproduction of the measured load-displacement curve of the selected specimen. However, the force-displacement curves of the other specimens predicted from µFE analyses based on the fitted tissue parameters compared less favourable to the experimental data. Natural variations exist in bone tissue properties [3]. It is not clear whether the differences in Fig. 2 are caused by this variations or by other factors, such as experimental artifacts or the formation of cracks, which are not accounted for in the µFE analyses.

References: