Mathematical Models in Aid of Diagnostics and Treatment of Heart Failure

Ingrid Groenenberg, Peter Bovendeerd, Bas de Mol and Frans van de Vosse
Eindhoven University of Technology, Department of Biomedical Engineering

Introduction
Heart failure is "a complex of complaints and symptoms due to an inadequate pump function of the heart" [1]. Roughly 1 to 2 percent of the Western population suffers from a failing heart. And every year another 0.5 to 1 percent will be affected. Valve stenosis is one of the causes of heart failure. After initial favorable adaptive growth (hypertrophy), the heart muscle may finally fail.

Diagnosis and Treatment
For the diagnosis of heart failure a lot of diagnostic tools are available. At the moment the most important ones are the electrocardiogram and the echocardiogram (fig. 2). In spite of these tools the selection of the optimal (surgical) treatment remains difficult, just like the prognosis after treatment.

Objective
The goal of this project is to enhance the diagnostic toolbox for heart failure by combining existing diagnostic information with a mathematical model of heart and circulation.

Method
The mathematical model describes the interaction between heart and circulation (fig. 3). The mechanical behavior of the ventricle is described by a one-fiber model, because the ventricles consist of one specially folded muscle band (fig. 3). The model translates clinical measurements (wall volume V_w, left ventricular pressure P_{lv} and volume V_{lv}) into muscle fiber stress σ_f and strain ϵ_f, according to [3]:

$$\sigma_f = P_{lv}(1 + 3\frac{V_{lv}}{V_w})$$ \hspace{1cm} (1)
$$\epsilon_f = \frac{1}{3}\ln(1 + \frac{V_{lv}}{V_w})$$ \hspace{1cm} (2)

Moreover, from the course of stress and strain, myocardial material properties are derived. These quantities will be the input for an adaptation process to predict hypertrophy.

The Case of Aortic Stenosis
Patients with a severe aortic stenosis (valve opening of less than 1 cm2), who are recommended for valve replacement, cannot be told whether or not the heart muscle will return to 'normal' (geometry) after the intervention.

Conclusion
A strategy has been elaborated, in which mathematical models can support diagnostics and treatment selection in heart failure.

References:
[2] F. Torrent-Guasp: La mecanica agonista-antagonista de los segmentos descendente y ascendente de la banda miocárdica ventricular