Influence of flow on PCCI combustion in a Heavy-Duty engine

Introduction
Premixed Charged Compression Ignition (PCCI) uses stratified regions to decrease the rate of heat release (RoHR). A very aggressive RoHR is a serious issue when applying Homogeneous Charged Compression Ignition (HCCI) at higher loads. In this project the influence of charge stratification on PCCI combustion is investigated by measuring in-cylinder velocities with and without spray injection. Stratifying charge both in temperature and in concentration will be done in the future using multiple injections.

One-cylinder optically accessible engine setup

Time Resolved PIV
Time Resolved PIV is used to visualize the flow in one cycle.
• Vision research Phantom V7.1 high speed camera
• Edgewave IS8II-DE high speed laser
• Lavision high speed controller + Davis

Turbulent kinetic energy
From the time resolved measurements the turbulent kinetic energy is determined using:

\[
TKE \equiv \frac{1}{N} \sum_{i=1}^{N} \left(\frac{(U_{x,i} - \overline{U}_x)^2 + (U_{y,i} - \overline{U}_y)^2}{m^2/s^2} \right)
\]

Conclusions
• TKE increases as function of rotational speed
• TKE increases as function of CAD, but decreases near TDC, turbulence dampens out
• TKE is slightly influenced by chosen interrogation window size
• In-cylinder flow is not significantly influenced by 500 bar spray injection
• Entrainment of air into spray is clearly visualized
• TKE level is lower in the plane close to cylinderhead (h=2mm)

Outlook
• Influence of multiple n-heptane DI injections on turbulence level and emissions.
• Measurement of temperature stratification by using tracer LIF using toluene

Acknowledgements
This project is financed by the Dutch Technology Foundation STW, Shell Global Solutions, DAF Trucks, Wärtsilä, TNO Automotive and supplied by Delphi Diesel Systems.