PHARMACOKINETIC MODELS IN CLINICAL PRACTICE: WHAT MODEL TO USE FOR DCE-MRI OF THE BREAST?

G.J.S. Litjens1, M. Heisen1, J. Buurman2, B.M. ter Haar Romeny1

1Eindhoven University of Technology, Department of Biomedical Engineering
5612AV Eindhoven, The Netherlands
2Philips Healthcare, Healthcare Informatics
5684 PC Best, The Netherlands

ABSTRACT

Pharmacokinetic modeling is increasingly used in DCE-MRI high risk breast cancer screening. Several models are available. The most common models are the standard and extended Tofts, the shutter-speed, and the Brix model. Each model and the meaning of its parameters is explained. It was investigated which models can be used in a clinical setting by simulating a range of sampling rates and noise levels representing different MRI acquisition schemes. In addition, an investigation was performed on the errors introduced in the estimates of the pharmacokinetic parameters when using a physiologically less complex model, i.e. the standard Tofts model, to fit curves generated with more complex models. It was found that the standard Tofts model is the only model that performs within an error margin of 20\% on parameter estimates over a range of sampling rates and noise levels. This still holds when small complex physiological effects are present.

Index Terms—Pharmacokinetic modeling, breast cancer, sampling time, DCE-MRI

1. INTRODUCTION

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has shown to be a valuable tool in diagnosis of breast cancer [1]. A Gd-DTPA based contrast agent (CA) is injected and \(T_1 \)-weighted scans are made over time. In addition to assessment of morphological features the kinetic behavior of the CA uptake has diagnostic potential [2]. However, descriptive features like signal enhancement ratio (as a measure of washout) seem to have limited value due to variations in patient physiology and injection protocol [3]. To remove these dependencies and obtain tumor-specific parameters, pharmacokinetic models were developed [4]. Over the past decade several models have become available for the analysis of the concentration-time curves of DCE-MRI. These models describe the diffusion of the CA from the blood pool into the extracellular space; each using different assumptions and simplifications. In this paper it is investigated if and which of these models can be used reliably for clinical data. The most prominent problem in clinical data acquisition when using these models is the sampling time (often 1-2 min) with which images are acquired. This sampling time is important because of the Nyquist-Shannon sampling criterion. In image acquisition a balance has to be found between image quality (SNR, spatial resolution) and sampling time, thus it was investigated if the use of certain models is restrained by this tradeoff.

Common pharmacokinetic models are the standard and extended Tofts models [5] (most used in literature); the shutter-speed model [6] (incorporates water-exchange effects); and the Brix model [7] (separate estimates of flow and permeability). This Brix model is based on the exchange model by Morales and Smith [8], as opposed to the other three models which are based on the exchange model by Kety [8].

The Tofts models consist of two and three parameters respectively. In the standard Tofts model [Eq. 1] \(K_{trans} \) is a combined measure of blood flow and capillary permeability (\(\text{min}^{-1} \)), whereas it only presents permeability in the extended model [Eq. 2] (under the assumption of fast blood flow). In both models, \(v_e \) is the volume fraction of extracellular, extravascular space (EES) within a voxel. The additional parameter used in the extended Tofts model is \(v_p \), the fraction of blood plasma within a voxel.

\[
C_i[t] = K_{trans} \int_0^t e^{-\frac{K_{trans}}{v_e}(t-s)} C_p[s]ds
\]

\[
C_i[t] = K_{trans} \int_0^t e^{-\frac{K_{trans}}{v_e}(t-s)} C_p[s]ds + v_p C_p[t]
\]

\(C_p[t] \) is the concentration (mM) of CA in the blood plasma and \(C_i[t] \) the concentration (mM) in the tissue of interest. Time \(t \) (min) is the time that has passed since CA injection.

The shutter-speed model [Eq. 3] is different in that it also incorporates the effect of water exchange on the MRI signal amplitude. Because the CA cannot enter the intracellular space (IS) it only has a direct effect on the water protons in the EES. The other models assume that the water exchange between those spaces is infinitely fast, essentially stating that the contrast agent can influence all water. The shutter-speed model does not use this assumption. For a thorough derivation the reader is referred to [6]. This model introduces the extra parameter \(\tau_1 \) (s) which is the mean time that a water proton is in the IS. In essence this model is not a pharmacokinetic model, as it uses the standard Tofts model to represent the pharmacokinetic part of the equation. The shutter-speed part models the MRI effects and thus gives \(R_1[t] \) (s\(^{-1}\)), the longitudinal relaxation rate. Time in this model is usually expressed in seconds.

\[
R_1[t] = \frac{1}{2} \left(C_i[t] R_1 + R_1, [0] + A_1 + \frac{1}{\tau_1} + A_2 \right) - \frac{1}{2} \sqrt{\left(-C_i[t] R_1 + R_1, [0] - A_1 + \frac{1}{\tau_1} - A_2 \right)^2 + A_3}
\]
\[
A_1 = \frac{R_1[0] - (1 - p_e) R_1[i]}{p_e} \\
A_2 = \frac{1 - p_e}{p_e \tau_i} \\
A_3 = \frac{4 (1 - p_e)}{p_e \tau_i^2}
\]

Here, \(\tau_i\) is the relativity of the contrast agent, which is approximately 3.8 (mM\(^{-1}\))s\(^{-1}\) [6]. \(R_1[0]\) (s\(^{-1}\)) and \(R_1[i]\) (s\(^{-1}\)) are the relaxation rates in the absence of CA for the entire tissue and the IS respectively. They are kept constant at .67 and .69 s\(^{-1}\) [6]. \(p_e\) is the fractional water population of the EES (\(p_e = .8 \cdot v_e\)) [6].

The Brix model [Eq. 4] has an independent measure for relative blood flow \(\frac{F}{r}\) (min\(^{-1}\)) in addition to \(K^{trans}\) (min\(^{-1}\)), which represents only permeability in this model, \(v_p\) and \(v_e\).

\[
\begin{align*}
v_p \frac{dC_p[t]}{dt} &= \frac{F}{r} (C_p[t] - C_e[t]) - K^{trans} (C_c[t] - C_e[t]) \\
v_e \frac{dC_e[t]}{dt} &= K^{trans} (C_c[t] - C_e[t]) \\
C_t &= v_p C_p + v_e C_e
\end{align*}
\]

Here \(r\) a constant fraction between arterial, venous and tissue concentration. For the complete derivation the reader is referred to [7].

To investigate the differences in the errors of parameter estimation in clinical data, independent of the actual parameter values, forward-backward simulations were performed. The arterial input function (AIF) by Parker et al. [9] was used. Using latin hypercube sampling [10], a set of parameters was selected from a predefined range of sampling rates is from 10 images to 50 images in the range of sampling rates. This was tested with a sampling rate of 20 images in the first 90 seconds and an added noise level equal of 8% of the concentration maximum. Concentration-time curves were simulated using either the Brix or shutter-speed models with different values for \(F\), \(v_p\) and \(\tau_i\). These curves were fitted with the standard Tofts model and the error in \(K^{trans}\) and \(v_e\) was determined. For the standard Tofts/Brix combination 3000 simulations and for the standard Tofts/shutter-speed combination 1000 simulations were performed.

3. RESULTS

The mean and standard deviation of the errors at each combination of sampling rate and noise level were used to create a table with confidence intervals for every parameter of each model. It was found that the error distribution was not a normal distribution (Jarque-Bera test [15]), therefore the central limit theorem cannot be used. Chebychev’s inequality [16] could still be used however, which is a worst case measure for any distribution. A 90% confidence interval was constructed by using the one-sided variant of this rule, which states that the mean ± 3 standard deviations forms a 90% confidence interval.

A boundary has to be defined for the error measure at which the use of the model is rejected. In literature, values for benign and malignant tissue have been measured using the standard Tofts model and there seems to be separation between classes [11, 17]. Parameter values between those classes differ up from 20% on average, although large standard deviations still cause problems in cluster separation. Here, any parameter estimation with an error confidence interval higher than 20% was rejected.

In table 1a the results of the standard Tofts model are shown and it can be seen that confidence intervals for parameters are acceptable except for 10 images in 90 seconds. The extended Tofts model (table 1c) performs well on \(K^{trans}\) and \(v_e\) for 40 and 50 images per 90 seconds, however the estimates of \(v_p\) are not reliable. As this estimate is essentially the added value of this model its use is questionable for these types of data. The shutter-speed model (table 1d) has the same issue as the extended Tofts model in that there is good estimates of \(K^{trans}\) and \(v_e\), but the errors on the added extra parameter \(\tau_i\) are higher than 20%, so there is no added value compared to the standard Tofts model. The Brix model (table 1b) showed no changes over differences in added noise level so the results shown here are only for differences in sampling rate. What can be seen is that the model performance is bad over all sampling rates and does not reach acceptable error levels. For all models the sampling rate is of greater importance in reducing errors than the added noise level, except when sampling rates are already high (30 images per 90 seconds and more).

In addition to incorporating more parameters that could be of diagnostic value, the more complex models also reduce the number of assumptions. As the standard Tofts model has the most assumptions it is illustrative to look into the effects on the error measure if these assumptions are wrong. In figure 1a the mean error in the estimates of \(K^{trans}\) and \(v_e\) are shown for simulations of concentration-time curves with the Brix model and fitting with the standard Tofts
model. It can be seen that the value of F has little influence on the estimation of K^{trans} and v_p, the contour line density is low perpendicular to the y-axis. For v_p, the results are different, for substantial increases in v_p, the errors in parameter estimates can increase significantly, which can be seen because the contour lines density is higher.

In figure 1c and d the results for simulating concentration-time curves with the shutter-speed model and fitting with the standard Tofts are shown. From these figures it can be concluded that it is very important to know the values of τ_1 to expect in breast cancer, its exclusion can have a large influence on the increase in average error.

4. DISCUSSION

It can be concluded that the errors in the standard Tofts model parameters are low enough to be used in clinical data when the assumptions underlying this model approximately hold. For the other models the use in clinical settings is doubtful because demands on the sampling time are much higher than those on the standard Tofts model, causing errors to be large for clinical values of sampling time and noise level. In addition it can be seen that when underlying assumptions are false, deviations from these assumptions can cause significant errors. Of these assumptions the infinitely fast water exchange is the most sensitive one, so more research should be focused towards assessing the role of this effect in DCE-MRI for breast cancer.

The simulations were performed with the AIF known. However, in practice, this is not the case. At the moment most research uses AIFs from either literature or estimated from a large artery. Reference tissue methods for AIF determination are quickly gaining popularity and enable quite accurate reconstruction of the AIF from the image data itself [18]. In future research the effects of AIF determination on the errors in parameter estimation should be assessed. It can be concluded that it is possible to acquire high temporal resolution images in the initial part of the curve in addition to high quality images in the latter part of the curve for morphological assessment and still fit a pharmacokinetic model successfully. This means that radiologists do not necessarily have to choose between one or the other. As scan time is precious, this is an important advantage.

5. REFERENCES

Table 1. Error values in percentages on parameter estimates for a 90% confidence interval when using different numbers of images in first 90 seconds of enhancement (y-axis) and added noise levels (x-axis). The values in the table can be explained as that for a parameter it can be

<table>
<thead>
<tr>
<th>Nr. images</th>
<th>Noise level multiplier</th>
<th>Noise level multiplier</th>
<th>Noise level multiplier</th>
<th>Noise level multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>40</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

(a) Standard Tofts Model: K^{trans} and v_e

(b) Brix Model: F, K^{trans}, v_e, v_p

(c) Extended Tofts Model: K^{trans}, v_e and v_p

(d) Shutter Speed Model: K^{trans}, v_e and τ_i
