Polymer Orientation and Crystallinity Measurements by FT-IR and IR dichroism

Gaetano Lambertti(1), Giuseppe Titomanlio(1), Gerrit W.M.Peters(2)
(1) Department of Chemical and Food Engineering, University of Salerno, Italy
(2) Materials Technology, Department of Mechanical Engineering, Eindhoven University of Technology, the Netherlands

Introduction
Final properties of a polymeric product are determined by its morphology that was developed as a consequence of processing conditions. Measurement of crystallinity and orientation is of importance for process optimization [1].

Experimental: FT-IR spectra analysis
Three IR spectra have to be collected (Fig. 1): non-polarized, polarized parallel and perpendicularly to the flow direction.

Crystallinity
Considering a crystalline peak and a peak insensitive to phase content, and starting from Lambert and Beer’s law, crystallinity X_c can be evaluated as follow:

$$X_c = \left(\frac{a_{av}}{a_{cr}} \right) \left(\frac{A_{cr}}{A_{av}} \right)$$

A_{cr}, a_{cr}, a_{av}: absorbancies, a_{cr}, a_{av}: absorptivities of crystalline fraction and of a peak insensitive to phase content respectively, (for iPP $a_{av} = 973$ cm$^{-1}$, $cr = 841$ cm$^{-1}$ and $a_{973}/a_{841} = 0.79$ [2]).

Orientation
The orientation factor can be obtained from Fraser’s theory (dichroic ratio $D_\nu = (A_{\parallel}/A_{\perp})_\nu$, for iPP $K_{973} = K_{841} = 1$ [2]):

$$f = \left[\left(\frac{D - 1}{D + 2} \right) \left(\frac{D_0 + 2}{D_0 - 1} \right) \right] = K_\nu \left(\frac{D - 1}{D + 2} \right)_\nu$$

Case histories
- Quenched polypropylene films [2] and film casting products [1] were analysed off-line (UNISA).
- On-line measurements were performed during film casting by a dedicated apparatus (UNISA, Fig. 2) [1].
- Injection moulded samples have been investigated by a FT-IR microscope (TUE, Fig. 3) [3].

Future work
In principle, the techniques can be applied on a rheometer. Rheological responses (η, G', G'') can directly be related (being measured during the same experiment) to morphology (f, X_c). A set-up like the one sketched in Fig. 4, is under development.

Problems
- Two opposite needs on sample thickness: (i) Rheology: $\delta > 300 \mu$m to avoid excessive forces, (ii) FT-IR: $\delta < 150-200 \mu$m to avoid saturated absorbancies
- Little room for IR mirror system positioning ($\delta \approx 1.2$ cm)
- No reliable optical fibres available to gather the spectral region between 750-1000 cm$^{-1}$

References: